CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Fast and Scalable Neural Network Quantum States Method for Molecular Potential Energy Surfaces
Wu, Yangjun1; Cao, Wanlu2; Zhao, Jiacheng2; Shang, Honghui1
2025-07-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号36期号:7页码:1431-1443
摘要The Neural Network Quantum States (NNQS) method is highly promising for accurately solving the Schr & ouml;dinger equation, yet it encounters challenges such as computational demands and slow rates of convergence. To address the high computational requirements, we introduce optimizations including a cross-sample KV cache sharing technique to enhance sampling efficiency, Quantum Bitwise and BloomHash methods for more efficient local energy computation, and mixed-precision training strategies to boost computational efficiency. To overcome the issue of slow convergence, we propose a parallel training algorithm for NNQS under second quantization to accelerate the training of base models for molecular potential surfaces. Our approach achieves up to 27-fold acceleration specifically in local energy calculations in systems with 154 spin orbitals and demonstrates strong and weak scaling efficiencies of 98% and 97%, respectively, on the H$_{2}$2O$_{2}$2 potential surface training set. The parallelized implementation of transformer-based NNQS is highly portable on various high-performance computing architectures, offering new perspectives on quantum chemistry simulations.
关键词Artificial neural networks Computational efficiency Training Wave functions Quantum state Computational modeling Optimization Electrons Convergence Potential energy Quantum computational chemistry many-body Schr & ouml neural network quantum state transformer based architecture autoregressive sampling potential energy surfaces dinger equation
DOI10.1109/TPDS.2025.3568360
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[T2222026] ; National Natural Science Foundation of China[U23B2020] ; National Natural Science Foundation of China[62302479] ; National Natural Science Foundation of China[62232015]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001498254200002
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42312
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shang, Honghui
作者单位1.Univ Sci & Technol China, State Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yangjun,Cao, Wanlu,Zhao, Jiacheng,et al. Fast and Scalable Neural Network Quantum States Method for Molecular Potential Energy Surfaces[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2025,36(7):1431-1443.
APA Wu, Yangjun,Cao, Wanlu,Zhao, Jiacheng,&Shang, Honghui.(2025).Fast and Scalable Neural Network Quantum States Method for Molecular Potential Energy Surfaces.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,36(7),1431-1443.
MLA Wu, Yangjun,et al."Fast and Scalable Neural Network Quantum States Method for Molecular Potential Energy Surfaces".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 36.7(2025):1431-1443.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Yangjun]的文章
[Cao, Wanlu]的文章
[Zhao, Jiacheng]的文章
百度学术
百度学术中相似的文章
[Wu, Yangjun]的文章
[Cao, Wanlu]的文章
[Zhao, Jiacheng]的文章
必应学术
必应学术中相似的文章
[Wu, Yangjun]的文章
[Cao, Wanlu]的文章
[Zhao, Jiacheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。