CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Generic Scene Graph Generation Model with Hierarchical Prompt Learning
Zhu, Xuhan1,2,3; Xing, Yifei1,2,3; Wang, Ruiping2,3; Wang, Yaowei1; Lan, Xiangyuan1
2025-06-27
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
ISSN0920-5691
页码19
摘要Scene Graph Generation (SGG) delivers structured knowledge to represent complex scenes and has proven effective in many computer vision tasks. However, traditional SGG models suffer from two limitations that hinder their applicability for higher-level visual tasks: (1) a rigid structure that results in low efficiency and limited flexibility, and (2) biased optimization that results in biased predictions that favor uninformative predicates. To resolve these two issues, we propose GSGG (Generic Scene Graph Generation), a novel, efficient, and flexible SGG model that (1) combines generalized modules to construct top-performance and high-efficiency SGG model and (2) employs a prompt learning-based relation decoder with a novel Hierarchical Prompt (HP) learning method to mitigate biased optimization. HP utilizes the composition of basic prompts constrained to progressively narrowed class groups and encourages the corresponding prompts to focus on the learning of increasingly informative predicates. Extensive evaluations on three SGG benchmarks demonstrate the excellent efficiency and performance of GSGG with HP. We also introduce a novel predicate generalization task with a new benchmark, and experiments on it demonstrate the effectiveness of HP in base-to-novel predicate generalization.
关键词Generic scene graph generation Hierarchical prompt learning Novel predicate generalization
DOI10.1007/s11263-025-02499-z
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[PCL2023A08] ; Pengcheng Laboratory Research Project[U21B2025] ; Pengcheng Laboratory Research Project[62402252] ; National Natural Science Foundation of China
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001518315700001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42304
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ruiping; Lan, Xiangyuan
作者单位1.Pengcheng Lab, Shenzhen 518000, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Xuhan,Xing, Yifei,Wang, Ruiping,et al. Generic Scene Graph Generation Model with Hierarchical Prompt Learning[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2025:19.
APA Zhu, Xuhan,Xing, Yifei,Wang, Ruiping,Wang, Yaowei,&Lan, Xiangyuan.(2025).Generic Scene Graph Generation Model with Hierarchical Prompt Learning.INTERNATIONAL JOURNAL OF COMPUTER VISION,19.
MLA Zhu, Xuhan,et al."Generic Scene Graph Generation Model with Hierarchical Prompt Learning".INTERNATIONAL JOURNAL OF COMPUTER VISION (2025):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Xuhan]的文章
[Xing, Yifei]的文章
[Wang, Ruiping]的文章
百度学术
百度学术中相似的文章
[Zhu, Xuhan]的文章
[Xing, Yifei]的文章
[Wang, Ruiping]的文章
必应学术
必应学术中相似的文章
[Zhu, Xuhan]的文章
[Xing, Yifei]的文章
[Wang, Ruiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。