CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ConUDiff: diffusion model with contrastive pretraining and uncertain region optimization for segmentation of left ventricle from echocardiography
Zhang, Guohuan1; Zhang, Lei1; Fu, Xuetong1; Wang, Yuanquan1; Zhou, Shoujun2; Wei, Jin3; Zhao, Di4
2025-09-01
发表期刊PATTERN ANALYSIS AND APPLICATIONS
ISSN1433-7541
卷号28期号:3页码:11
摘要Accurate segmentation of the left ventricle (LV) in echocardiograms plays a crucial role in the diagnosis and treatment of cardiovascular diseases. However, manual segmentation of the left ventricle is time-consuming and subject to inter-observer variability. It is crucial to develop an accurate and automatic segmentation method. In this paper, we propose a novel diffusion-based model, called ConUDiff in short, for LV segmentation in echocardiography. The proposed ConUDiff is based on the denoising diffusion probabilistic model and two modules are introduced, i.e., a contrastive pretrained ResNet-50 encoder and an uncertain region optimization module (UROM). The contrastive pretrained ResNet-50 encoder is employed to extract rich feature representations from the original image and enhance the semantic information contained in the feature maps. The UROM module is designed to optimize uncertain regions in the feature maps. We evaluate our method on two public datasets, i.e., the EchoNet-Dynamic dataset and the EchoNet-Pediatric dataset. The experimental results demonstrate that the proposed ConUDiff outperforms some popular networks, achieving a Dice score of 92.68% on the EchoNet-Dynamic dataset and a Dice score of 90.69% on the EchoNet-Pediatric dataset. Our method shows the potential for echocardiographic left ventricle segmentation.
关键词Diffusion models Echocardiography Left ventricle Segmentation Contrastive learning Uncertain region optimization
DOI10.1007/s10044-025-01509-7
收录类别SCI
语种英语
资助项目the National Science Foundation of China[61976241] ; the National Science Foundation of China[81827805] ; National Science Foundation of China (NSFC)[2018YFA0704102] ; National key R&D program of China[JCYJ20200109114610201] ; Basic Research Project of Shenzhen Science and Technology Innovation Commission
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001514383900001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42286
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Yuanquan; Zhou, Shoujun
作者单位1.Hebei Univ Technol HeBUT, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
3.Third Cent Hosp Tianjin, Tianjin 300171, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Guohuan,Zhang, Lei,Fu, Xuetong,et al. ConUDiff: diffusion model with contrastive pretraining and uncertain region optimization for segmentation of left ventricle from echocardiography[J]. PATTERN ANALYSIS AND APPLICATIONS,2025,28(3):11.
APA Zhang, Guohuan.,Zhang, Lei.,Fu, Xuetong.,Wang, Yuanquan.,Zhou, Shoujun.,...&Zhao, Di.(2025).ConUDiff: diffusion model with contrastive pretraining and uncertain region optimization for segmentation of left ventricle from echocardiography.PATTERN ANALYSIS AND APPLICATIONS,28(3),11.
MLA Zhang, Guohuan,et al."ConUDiff: diffusion model with contrastive pretraining and uncertain region optimization for segmentation of left ventricle from echocardiography".PATTERN ANALYSIS AND APPLICATIONS 28.3(2025):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Guohuan]的文章
[Zhang, Lei]的文章
[Fu, Xuetong]的文章
百度学术
百度学术中相似的文章
[Zhang, Guohuan]的文章
[Zhang, Lei]的文章
[Fu, Xuetong]的文章
必应学术
必应学术中相似的文章
[Zhang, Guohuan]的文章
[Zhang, Lei]的文章
[Fu, Xuetong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。