CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An Improved MAE-Based Pretraining Method for Urban Public Space Monitoring With Optical Remote Sensing Imagery
Wei, Wentao1,2; Chen, Huan1,2; Jiang, Yu1,2; Fu, Li1,2; Yao, Ping1,2
2025
发表期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
ISSN1939-1404
卷号18页码:16929-16941
摘要Monitoring urban public spaces is a vital component of scientific urban planning. This article proposes an improved masked autoencoder (MAE)-based pretraining method for automatic monitoring of urban public spaces with semantic segmentation of optical satellite remote sensing imagery. Different from most existing image encoders of vision transformer pretrained with MAE method on natural images, which have difficulty in transferring to small-scale remote sensing dataset because of its large domain gap relative to natural images and limit the fine-tuning performance on downstream tasks, our method performs pretraining directly on target remote sensing imagery to better capture its feature distribution. Specifically, label information is filled into masked regions to enhance the model's image reconstruction capabilities. In addition, we design a momentum branch to ensure the stability and consistency of feature updates and adopt the dynamic masking strategy to reduce reconstruction difficulty during the initial stages of pretraining. This ensures a smooth transition to later stages, significantly improving the accuracy and efficiency of image generation. Experimental results demonstrate that the proposed method significantly outperforms competing MAE-based vision transformer approaches as well as state-of-the-art CNN-based methods on the test dataset. Furthermore, an analysis of the per capita public space in Haikou city validates the effectiveness of the proposed method for monitoring urban public spaces.
关键词Masked autoencoder (MAE) remote sensing semantic segmentation semantic segmentation urban public space urban public space urban public space
DOI10.1109/JSTARS.2025.3584546
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19020400]
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001531874800004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42091
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yao, Ping
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Wei, Wentao,Chen, Huan,Jiang, Yu,et al. An Improved MAE-Based Pretraining Method for Urban Public Space Monitoring With Optical Remote Sensing Imagery[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2025,18:16929-16941.
APA Wei, Wentao,Chen, Huan,Jiang, Yu,Fu, Li,&Yao, Ping.(2025).An Improved MAE-Based Pretraining Method for Urban Public Space Monitoring With Optical Remote Sensing Imagery.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,18,16929-16941.
MLA Wei, Wentao,et al."An Improved MAE-Based Pretraining Method for Urban Public Space Monitoring With Optical Remote Sensing Imagery".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 18(2025):16929-16941.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Wentao]的文章
[Chen, Huan]的文章
[Jiang, Yu]的文章
百度学术
百度学术中相似的文章
[Wei, Wentao]的文章
[Chen, Huan]的文章
[Jiang, Yu]的文章
必应学术
必应学术中相似的文章
[Wei, Wentao]的文章
[Chen, Huan]的文章
[Jiang, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。