CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning representations for quality estimation of crowdsourced submissions
Lyu, Shanshan1,2; Ouyang, Wentao1; Shen, Huawei1; Cheng, Xueqi1
2019-07-01
发表期刊INFORMATION PROCESSING & MANAGEMENT
ISSN0306-4573
卷号56期号:4页码:1484-1493
摘要The problem of quality estimation of crowdsourced work is of great importance. Although a variety of aggregation methods have been proposed to find high-quality structured claims in multiple-choice crowdsourcing tasks such as item labeling, they do not apply to more general tasks, such as article writing and brand design with unstructured submissions. One possibility to tackle this problem is to ask another set of crowd workers to review and grade each submission, essentially transforming unstructured submissions into structured ratings. Nevertheless, such an approach incurs unnecessary monetary cost and delay. In this paper, we address this problem by exploiting task requesters' historical feedback and directly modeling the submission quality. We propose two embedding-based methods where the first one learns worker embedding and the second one learns both worker embedding and meta information embedding, with additional consideration of neighborhood similarity. Experimental results on three large-scale crowdsourcing data sets demonstrate that our embedding-based feature-learning methods perform much better than feature-engineering methods that use popular learning-to-rank algorithms. At the same time, our methods do not require additional crowdsourced grading.
关键词Crowdsourcing Quality estimation Embedding
DOI10.1016/j.ipm.2018.10.020
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB0803302] ; National Basic Research Program of China (973Program)[2014CB340401] ; National Natural Science Foundation of China[61602439] ; National Natural Science Foundation of China[61472400] ; National Natural Science Foundation of China[91746301] ; CAS Pioneer Hundred Talents Program[2920164120]
WOS研究方向Computer Science ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Information Science & Library Science
WOS记录号WOS:000469907200020
出版者ELSEVIER SCI LTD
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4208
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Lyu, Shanshan
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Lyu, Shanshan,Ouyang, Wentao,Shen, Huawei,et al. Learning representations for quality estimation of crowdsourced submissions[J]. INFORMATION PROCESSING & MANAGEMENT,2019,56(4):1484-1493.
APA Lyu, Shanshan,Ouyang, Wentao,Shen, Huawei,&Cheng, Xueqi.(2019).Learning representations for quality estimation of crowdsourced submissions.INFORMATION PROCESSING & MANAGEMENT,56(4),1484-1493.
MLA Lyu, Shanshan,et al."Learning representations for quality estimation of crowdsourced submissions".INFORMATION PROCESSING & MANAGEMENT 56.4(2019):1484-1493.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lyu, Shanshan]的文章
[Ouyang, Wentao]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Lyu, Shanshan]的文章
[Ouyang, Wentao]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Lyu, Shanshan]的文章
[Ouyang, Wentao]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。