CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CST-Net: community-guided structural-temporal convolutional networks for popularity prediction
Zheng, Xuxu1,2; Bao, Peng3; Qi, Lin3; Tian, Chen3; Shen, Huawei1,2
2025-06-26
发表期刊PEERJ COMPUTER SCIENCE
卷号11页码:21
摘要The ability to predict the popularity of online contents has important implications in a wide range of areas. The challenge of this problem comes from the inequality of the popularity of content and the numerous complex factors. Existing works fall into three main paradigms: feature-driven approaches, generative models, and methods based on deep learning, each with known strengths and limitations. In this article, we propose an end-to-end deep learning framework, called CST-Net, to combat the defects of existing methods. We first learn a low-dimensional embedding for each user based on historic interactions. Then, users are clustered into communities based on the learned user embeddings, and information cascades are represented as a series of episodes in the form of community interaction matrix. Afterwards, a convolutional architecture is applied to learn the representation of the entire information cascade. Finally, the extracted structural and temporal features are further combined to predict the incremental popularity. We validate the effectiveness of the proposed CST-Net by applying it on two different types of population-scale datasets, i.e., a microblogging dataset and an academic citation dataset. Experimental results demonstrate that the proposed CST-Net model consistently outperforms the existing competitive popularity prediction methods.
关键词Information diffusion Popularity prediction Social network Neural networks
DOI10.7717/peerj-cs.2931
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61263033] ; National Natural Science Foundation of China[U21B2046]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:001531886500001
出版者PEERJ INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42085
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Bao, Peng
作者单位1.Univ Chinese Acad Sci, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Beijing Jiaotong Univ, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Xuxu,Bao, Peng,Qi, Lin,et al. CST-Net: community-guided structural-temporal convolutional networks for popularity prediction[J]. PEERJ COMPUTER SCIENCE,2025,11:21.
APA Zheng, Xuxu,Bao, Peng,Qi, Lin,Tian, Chen,&Shen, Huawei.(2025).CST-Net: community-guided structural-temporal convolutional networks for popularity prediction.PEERJ COMPUTER SCIENCE,11,21.
MLA Zheng, Xuxu,et al."CST-Net: community-guided structural-temporal convolutional networks for popularity prediction".PEERJ COMPUTER SCIENCE 11(2025):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Xuxu]的文章
[Bao, Peng]的文章
[Qi, Lin]的文章
百度学术
百度学术中相似的文章
[Zheng, Xuxu]的文章
[Bao, Peng]的文章
[Qi, Lin]的文章
必应学术
必应学术中相似的文章
[Zheng, Xuxu]的文章
[Bao, Peng]的文章
[Qi, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。