CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Locality-constrained framework for face alignment
Zhang, Jie1,2; Zhao, Xiaowei3; Kan, Meina1; Shan, Shiguang1; Chai, Xiujuan1; Chen, Xilin1
2019-08-01
发表期刊FRONTIERS OF COMPUTER SCIENCE
ISSN2095-2228
卷号13期号:4页码:789-801
摘要Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the generalization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity-regularized AAM is approximated by using the locality (i.e., K-nearest neighbor), and thus inducing the locality-constrained active appearance-model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate K-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability.
关键词locality-constrained AAM locality-constrained DFM face alignment sparsity-regularization
DOI10.1007/s11704-018-6617-z
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[61402443] ; National Natural Science Foundation of China[61672496] ; Strategic Priority Research Program of the CAS[XDB02070004]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000469220400008
出版者HIGHER EDUCATION PRESS
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4206
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shan, Shiguang
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Alibaba Grp, Hangzhou 311121, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jie,Zhao, Xiaowei,Kan, Meina,et al. Locality-constrained framework for face alignment[J]. FRONTIERS OF COMPUTER SCIENCE,2019,13(4):789-801.
APA Zhang, Jie,Zhao, Xiaowei,Kan, Meina,Shan, Shiguang,Chai, Xiujuan,&Chen, Xilin.(2019).Locality-constrained framework for face alignment.FRONTIERS OF COMPUTER SCIENCE,13(4),789-801.
MLA Zhang, Jie,et al."Locality-constrained framework for face alignment".FRONTIERS OF COMPUTER SCIENCE 13.4(2019):789-801.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jie]的文章
[Zhao, Xiaowei]的文章
[Kan, Meina]的文章
百度学术
百度学术中相似的文章
[Zhang, Jie]的文章
[Zhao, Xiaowei]的文章
[Kan, Meina]的文章
必应学术
必应学术中相似的文章
[Zhang, Jie]的文章
[Zhao, Xiaowei]的文章
[Kan, Meina]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。