CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Identifying patterns of high intraoperative blood pressure variability in noncardiac surgery using explainable machine learning: a retrospective cohort study
Zhang, Zheng1; Wu, Jian2; Duan, Yi1; Liu, Linwei3; Liu, Yaru2; Wang, Jinghan2; Xiao, Li2,3; Gao, Zhifeng1
2025-12-31
发表期刊ANNALS OF MEDICINE
ISSN0785-3890
卷号57期号:1页码:12
摘要Background: High intraoperative blood pressure variability (HIBPV) is significantly associated with postoperative adverse complications. However, practical tools to characterize perioperative factors associated with HIBPV remain limited. This study aimed to develop explainable supervised machine learning (ML) models to classify patients with HIBPV and to identify structural perioperative patterns associated with HIBPV through model interpretation. Materials and Methods: This retrospective cohort study analyzed 47,520 noncardiac surgery cases from Beijing Tsinghua Changgung Hospital. We applied four ML algorithms-Extreme Gradient Boosting (XGBoost), Random Forest (RF), Light Gradient Boosting Machine (LightGBM), and Logistic Regression (LR)-to classify patients with or without HIBPV. The overall population and each age subgroup (pediatric, adult, elderly) underwent independent 70/30 train-test splits for model development. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC). SHapley Additive exPlanations (SHAP) values were used to interpret model outputs and assess feature importance. Results: Among 47,520 noncardiac surgeries, 1,996 (4.2%) were classified as HIBPV. XGBoost and RF achieved the best performance, with AUROC values of 0.85 (95% confidence intervals (CI): 0.84-0.86) and 0.84 (95% CI: 0.82-0.85). Intraoperative average heart rate (HR) and bispectral index (BIS) were the most influential variables. In patients aged 50 similar to 70, higher sevoflurane dosage was associated with reduced HIBPV risk. Among hypertensive patients, elevated intraoperative blood calcium (>1.10 mmol/L) was associated with increased HIBPV risk. Conclusion: The models enabled accurate classification of HIBPV cases and highlighted key discriminative perioperative variables through SHAP-based interpretation. Intraoperative HR and BIS were significant contributing factors. Moreover, interactions between sevoflurane and age and between hypertension and calcium levels may inform individualized hemodynamic management strategies.
关键词Machine learning blood pressure variability Anesthesia management
DOI10.1080/07853890.2025.2537920
收录类别SCI
语种英语
资助项目Beijing Research Ward Excellence Program
WOS研究方向General & Internal Medicine
WOS类目Medicine, General & Internal
WOS记录号WOS:001536415700001
出版者TAYLOR & FRANCIS LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42049
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xiao, Li; Gao, Zhifeng
作者单位1.Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Anesthesiol,Tsinghua Med, Beijing 102218, Peoples R China
2.Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zheng,Wu, Jian,Duan, Yi,et al. Identifying patterns of high intraoperative blood pressure variability in noncardiac surgery using explainable machine learning: a retrospective cohort study[J]. ANNALS OF MEDICINE,2025,57(1):12.
APA Zhang, Zheng.,Wu, Jian.,Duan, Yi.,Liu, Linwei.,Liu, Yaru.,...&Gao, Zhifeng.(2025).Identifying patterns of high intraoperative blood pressure variability in noncardiac surgery using explainable machine learning: a retrospective cohort study.ANNALS OF MEDICINE,57(1),12.
MLA Zhang, Zheng,et al."Identifying patterns of high intraoperative blood pressure variability in noncardiac surgery using explainable machine learning: a retrospective cohort study".ANNALS OF MEDICINE 57.1(2025):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zheng]的文章
[Wu, Jian]的文章
[Duan, Yi]的文章
百度学术
百度学术中相似的文章
[Zhang, Zheng]的文章
[Wu, Jian]的文章
[Duan, Yi]的文章
必应学术
必应学术中相似的文章
[Zhang, Zheng]的文章
[Wu, Jian]的文章
[Duan, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。