CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
GinAR plus : A Robust End-to-End Framework for Multivariate Time Series Forecasting With Missing Values
Yu, Chengqing1,2; Wang, Fei1,2; Shao, Zezhi3; Qian, Tangwen3; Zhang, Zhao3; Wei, Wei4; An, Zhulin3; Wang, Qi3; Xu, Yongjun1,2
2025-08-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号37期号:8页码:4635-4648
摘要Spatial-Temporal Graph Neural Networks (STGNNs) have been widely utilized in multivariate time series forecasting (MTSF), but they rely on the assumption of data completeness. In practice, due to factors such as natural disaster, STGNNs frequently encounter the challenge of missing data resulting from numerous malfunctioning data collectors. In this case, on the one hand, due to the presence of missing values, STGNNs easily generate incorrect spatial correlations, leading to the performance degradation. On the other hand, STGNNs require separate training of models for different missing rates, limiting their robustness. To address these challenges, we first propose two important components (interpolation attention and adaptive graph convolution), which utilize normal values to recover missing values into reliable representations and reconstruct spatial correlations. Then, we replace the fully connected layers in simple recursive units with these two components and propose Graph Interpolation Attention Recursive Network (GinAR), aiming to recursively correct spatial correlations and achieve end-to-end MTSF with missing values. Finally, we use data with different missing rates as positive and negative data pairs. By employing contrastive learning to train GinAR, we propose GinAR+ and enhance its robustness to data with different missing rates. Experiments validate the superiority of GinAR+ and our motivation.
关键词Correlation Predictive models Forecasting Time series analysis Data models Robustness Adaptation models Imputation Contrastive learning Training graph interpolation attention recursive network multivariate time series forecasting with missing values
DOI10.1109/TKDE.2025.3569649
收录类别SCI
语种英语
资助项目NSFC[62372430] ; CPSF[GZC20241758] ; Youth Innovation Promotion Association CAS[2023112]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:001525525600027
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42043
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
推荐引用方式
GB/T 7714
Yu, Chengqing,Wang, Fei,Shao, Zezhi,et al. GinAR plus : A Robust End-to-End Framework for Multivariate Time Series Forecasting With Missing Values[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2025,37(8):4635-4648.
APA Yu, Chengqing.,Wang, Fei.,Shao, Zezhi.,Qian, Tangwen.,Zhang, Zhao.,...&Xu, Yongjun.(2025).GinAR plus : A Robust End-to-End Framework for Multivariate Time Series Forecasting With Missing Values.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,37(8),4635-4648.
MLA Yu, Chengqing,et al."GinAR plus : A Robust End-to-End Framework for Multivariate Time Series Forecasting With Missing Values".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 37.8(2025):4635-4648.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Chengqing]的文章
[Wang, Fei]的文章
[Shao, Zezhi]的文章
百度学术
百度学术中相似的文章
[Yu, Chengqing]的文章
[Wang, Fei]的文章
[Shao, Zezhi]的文章
必应学术
必应学术中相似的文章
[Yu, Chengqing]的文章
[Wang, Fei]的文章
[Shao, Zezhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。