CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Supervised representation learning for multi-label classification
Huang, Ming1,2; Zhuang, Fuzhen1,2; Zhang, Xiao3; Ao, Xiang1,2; Niu, Zhengyu4; Zhang, Min-Ling5; He, Qing1,2
2019-05-01
发表期刊MACHINE LEARNING
ISSN0885-6125
卷号108期号:5页码:747-763
摘要Representation learning is one of the most important aspects of multi-label learning because of the intricate nature of multi-label data. Current research on representation learning either fails to consider label knowledge or is affected by the lack of labeled data. Moreover, most of them learn the representations and incorporate the label information in a two-step manner. In this paper, due to the success of representation learning by deep learning we propose a novel framework based on neural networks named SERL to learn global feature representation by jointly considering all labels in an effective supervised manner. At its core, a two-encoding-layer autoencoder, which can utilize labeled and unlabeled data, is adopted to learn feature representation in the supervision of softmax regression. Specifically, the softmax regression incorporates label knowledge to improve the performance of both representation learning and multi-label learning by being jointly optimized with the autoencoder. Moreover, the autoencoder is expanded into two encoding layers to share knowledge with the softmax regression by sharing the second encoding weight matrix. We conduct extensive experiments on five real-world datasets to demonstrate the superiority of SERL over other state-of-the-art multi-label learning approaches.
关键词Representation learning Multi-label learning Two-encoding-layer autoencoder
DOI10.1007/s10994-019-05783-5
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[61773361] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[U1811461] ; Project of Youth Innovation Promotion Association CAS[2017146]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000470185100003
出版者SPRINGER
引用统计
被引频次:21[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4202
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
4.Baidu Inc, Beijing, Peoples R China
5.South East Univ, Nanjing, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Huang, Ming,Zhuang, Fuzhen,Zhang, Xiao,et al. Supervised representation learning for multi-label classification[J]. MACHINE LEARNING,2019,108(5):747-763.
APA Huang, Ming.,Zhuang, Fuzhen.,Zhang, Xiao.,Ao, Xiang.,Niu, Zhengyu.,...&He, Qing.(2019).Supervised representation learning for multi-label classification.MACHINE LEARNING,108(5),747-763.
MLA Huang, Ming,et al."Supervised representation learning for multi-label classification".MACHINE LEARNING 108.5(2019):747-763.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Ming]的文章
[Zhuang, Fuzhen]的文章
[Zhang, Xiao]的文章
百度学术
百度学术中相似的文章
[Huang, Ming]的文章
[Zhuang, Fuzhen]的文章
[Zhang, Xiao]的文章
必应学术
必应学术中相似的文章
[Huang, Ming]的文章
[Zhuang, Fuzhen]的文章
[Zhang, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。