CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PhysCL: Knowledge-Aware Contrastive Learning of Physiological Signal Models for Cuff-Less Blood Pressure Estimation
Liu, Renju1,2; Shen, Jianfei1; Gu, Yang1; Chen, Yiqiang1; Zhang, Jiling3; Wu, Qingyu1; Xu, Chenyang4; Fan, Feiyi1
2025-07-01
发表期刊IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN2168-2194
卷号29期号:7页码:4728-4740
摘要Training deep learning models for photoplethysmography(PPG)-based cuff-less blood pressure estimation often requires a substantial amount of labeled data collected through sophisticated medical instruments, posing significant challenges in practical applications. To address this issue, we propose Physiological Knowledge-Aware Contrastive Learning (PhysCL), a novel approach designed to reduce the dependence on labeled PPG data while improving blood pressure estimation accuracy. Specifically, PhysCL tackles the semantic consistency problem in contrastive learning by introducing a knowledge-aware augmentation bank, which generates positive physiological signal pairs using knowledge-based constraints during the contrastive pair generation. Additionally, we propose a contrastive feature reconstruction method to enhance feature diversity and prevent model collapse through feature re-sampling and re-weighting. We evaluate PhysCL on data from 106 subjects across the MIMIC III, MIMIC IV, and UQVS datasets under cross-dataset validation settings, comparing it against state-of-the-art contrastive learning methods and blood pressure estimation models. PhysCL achieves an average mean absolute error of 9.5/5.9 mmHg (systolic/diastolic) across the three datasets, using only 2% labeled data combined with 98% unlabeled data for pre-training and 5 samples for personalization, which represents a 6.2% /4.3% improvement, respectively, over the current best supervised methods. The ablation study provides further convincing evidence that the unlabeled data can be utilized to improve the existing cuff-less blood pressure estimation models and shed light on unsupervised contrastive learning for physiological signals.
关键词Blood pressure Physiology Contrastive learning Data augmentation Semantics Feature extraction Estimation Time series analysis Training Data models Blood pressure estimation physiological signal processing representation learning self-supervised learning
DOI10.1109/JBHI.2025.3554495
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62101530] ; Beijing Municipal Science & Technology Commission[Z221100002722009] ; Youth Innovation Promotion Association CAS[2021101] ; AI Dream Project[SZSM202401] ; AI Dream Project[SZSM202403]
WOS研究方向Computer Science ; Mathematical & Computational Biology ; Medical Informatics
WOS类目Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Medical Informatics
WOS记录号WOS:001523482700009
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42021
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fan, Feiyi
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Beijing Normal Univ Hong Kong Baptist Univ United, Dept Comp Sci, Zhuhai 519087, Peoples R China
3.Zhejiang Univ, Sch Software Technol, Hangzhou 310058, Peoples R China
4.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
推荐引用方式
GB/T 7714
Liu, Renju,Shen, Jianfei,Gu, Yang,et al. PhysCL: Knowledge-Aware Contrastive Learning of Physiological Signal Models for Cuff-Less Blood Pressure Estimation[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2025,29(7):4728-4740.
APA Liu, Renju.,Shen, Jianfei.,Gu, Yang.,Chen, Yiqiang.,Zhang, Jiling.,...&Fan, Feiyi.(2025).PhysCL: Knowledge-Aware Contrastive Learning of Physiological Signal Models for Cuff-Less Blood Pressure Estimation.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,29(7),4728-4740.
MLA Liu, Renju,et al."PhysCL: Knowledge-Aware Contrastive Learning of Physiological Signal Models for Cuff-Less Blood Pressure Estimation".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 29.7(2025):4728-4740.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Renju]的文章
[Shen, Jianfei]的文章
[Gu, Yang]的文章
百度学术
百度学术中相似的文章
[Liu, Renju]的文章
[Shen, Jianfei]的文章
[Gu, Yang]的文章
必应学术
必应学术中相似的文章
[Liu, Renju]的文章
[Shen, Jianfei]的文章
[Gu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。