CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Float-Fix: An Efficient and Hardware-Friendly Data Type for Deep Neural Network
Han, Dong1,2; Zhou, Shengyuan1,2; Zhi, Tian1; Wang, Yibo4; Liu, Shaoli1,3
2019-06-01
发表期刊INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
ISSN0885-7458
卷号47期号:3页码:345-359
摘要Recent years, as deep learning rose in prominence, neural network accelerators boomed. The existing research shows that both speed and energy-efficiency can be improved by low precision data structure. However, decreasing the precision of data might compromise the usefulness and accuracy of the underlying AI. And the existing studies can not meet all AI application requirements. In the paper, we propose a new data type, called Float-Fix (FF). We introduce the structure of FF and compare it with other data types. In our evaluation, the accuracy loss of 8-bit FF is less than 0.12% on a subset of known neural network models, 7x better than fixed-point, DFX and floating-point on average. We implement the hardware architectures of operators and neural processing unit using 8-bit FF data type with TSMC 65nm Gplus High VT library. The experiments show that the hardware cost of convertors converting between 16-bit fixed-point and FF is really small. And the multiplier of 8-bit FF only needs 1188m2 area, which is nearly 8-bit fixed-point. Comparing with the neural processing unit of DianNao, FF reduces 34.3% area.
关键词Float-Fix Neural network Hardware accelerator Data type
DOI10.1007/s10766-018-00626-7
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0700902] ; National Key Research and Development Program of China[2017YFB1003101] ; NSF of China[6147239] ; NSF of China[61432016] ; NSF of China[61473275] ; NSF of China[61522211] ; NSF of China[61532016] ; NSF of China[61521092] ; NSF of China[61502446] ; NSF of China[61672491] ; NSF of China[61602441] ; NSF of China[61602446] ; NSF of China[61732002] ; NSF of China[61702478] ; 973 Program of China[2015CB358800] ; National Science and Technology Major Project[2018ZX01031102] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDBS01050200]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000471644400002
出版者SPRINGER/PLENUM PUBLISHERS
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4180
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Shaoli
作者单位1.Chinese Acad Sci, Intelligent Processor Res Ctr, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Cambricon Tech Ltd, Beijing, Peoples R China
4.Tsinghua Univ, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Han, Dong,Zhou, Shengyuan,Zhi, Tian,et al. Float-Fix: An Efficient and Hardware-Friendly Data Type for Deep Neural Network[J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING,2019,47(3):345-359.
APA Han, Dong,Zhou, Shengyuan,Zhi, Tian,Wang, Yibo,&Liu, Shaoli.(2019).Float-Fix: An Efficient and Hardware-Friendly Data Type for Deep Neural Network.INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING,47(3),345-359.
MLA Han, Dong,et al."Float-Fix: An Efficient and Hardware-Friendly Data Type for Deep Neural Network".INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING 47.3(2019):345-359.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han, Dong]的文章
[Zhou, Shengyuan]的文章
[Zhi, Tian]的文章
百度学术
百度学术中相似的文章
[Han, Dong]的文章
[Zhou, Shengyuan]的文章
[Zhi, Tian]的文章
必应学术
必应学术中相似的文章
[Han, Dong]的文章
[Zhou, Shengyuan]的文章
[Zhi, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。