Institute of Computing Technology, Chinese Academy IR
| Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication | |
| Liu, Junhong1; He, Xin1; Liu, Weifeng2; Tan, Guangming1 | |
| 2019-06-01 | |
| 发表期刊 | INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
![]() |
| ISSN | 0885-7458 |
| 卷号 | 47期号:3页码:403-417 |
| 摘要 | General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block of a number of high-level algorithms and real-world applications. In recent years, several efficient SpGEMM algorithms have been proposed for many-core processors such as GPUs. However, their implementations of sparse accumulators, the core component of SpGEMM, mostly use low speed on-chip shared memory and global memory, and high speed registers are seriously underutilised. In this paper, we propose three novel register-aware SpGEMM algorithms for three representative sparse accumulators, i.e., sort, merge and hash, respectively. We fully utilise the GPU registers to fetch data, finish computations and store results out. In the experiments, our algorithms deliver excellent performance on a benchmark suite including 205 sparse matrices from the SuiteSparse Matrix Collection. Specifically, on an Nvidia Pascal P100 GPU, our three register-aware sparse accumulators achieve on average 2.0x (up to 5.4x), 2.6x (up to 10.5x) and 1.7x (up to 5.2x) speedups over their original implementations in libraries bhSPARSE, RMerge and NSPARSE, respectively. |
| 关键词 | Sparse matrix Sparse matrix-matrix multiplication GPU Register |
| DOI | 10.1007/s10766-018-0604-8 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Key Research and Development Program of China[2017YFB0202105] ; National Key Research and Development Program of China[2016YFB0201305] ; National Key Research and Development Program of China[2016YFB0200803] ; National Key Research and Development Program of China[2016YFB0200300] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[91430218] ; National Natural Science Foundation of China[31327901] ; National Natural Science Foundation of China[61472395] ; National Natural Science Foundation of China[61432018] ; European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie project[752321] |
| WOS研究方向 | Computer Science |
| WOS类目 | Computer Science, Theory & Methods |
| WOS记录号 | WOS:000471644400006 |
| 出版者 | SPRINGER/PLENUM PUBLISHERS |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/4176 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Liu, Junhong |
| 作者单位 | 1.Univ Chinese Acad Sci, State Key Lab Comp Architecture, Inst Comp Technol, Chinese Acad Sci, Beijing, Peoples R China 2.Norwegian Univ Sci & Technol, Dept Comp Sci, Trondheim, Norway |
| 推荐引用方式 GB/T 7714 | Liu, Junhong,He, Xin,Liu, Weifeng,et al. Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication[J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING,2019,47(3):403-417. |
| APA | Liu, Junhong,He, Xin,Liu, Weifeng,&Tan, Guangming.(2019).Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication.INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING,47(3),403-417. |
| MLA | Liu, Junhong,et al."Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication".INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING 47.3(2019):403-417. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论