CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication
Liu, Junhong1; He, Xin1; Liu, Weifeng2; Tan, Guangming1
2019-06-01
发表期刊INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
ISSN0885-7458
卷号47期号:3页码:403-417
摘要General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block of a number of high-level algorithms and real-world applications. In recent years, several efficient SpGEMM algorithms have been proposed for many-core processors such as GPUs. However, their implementations of sparse accumulators, the core component of SpGEMM, mostly use low speed on-chip shared memory and global memory, and high speed registers are seriously underutilised. In this paper, we propose three novel register-aware SpGEMM algorithms for three representative sparse accumulators, i.e., sort, merge and hash, respectively. We fully utilise the GPU registers to fetch data, finish computations and store results out. In the experiments, our algorithms deliver excellent performance on a benchmark suite including 205 sparse matrices from the SuiteSparse Matrix Collection. Specifically, on an Nvidia Pascal P100 GPU, our three register-aware sparse accumulators achieve on average 2.0x (up to 5.4x), 2.6x (up to 10.5x) and 1.7x (up to 5.2x) speedups over their original implementations in libraries bhSPARSE, RMerge and NSPARSE, respectively.
关键词Sparse matrix Sparse matrix-matrix multiplication GPU Register
DOI10.1007/s10766-018-0604-8
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB0202105] ; National Key Research and Development Program of China[2016YFB0201305] ; National Key Research and Development Program of China[2016YFB0200803] ; National Key Research and Development Program of China[2016YFB0200300] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[91430218] ; National Natural Science Foundation of China[31327901] ; National Natural Science Foundation of China[61472395] ; National Natural Science Foundation of China[61432018] ; European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie project[752321]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000471644400006
出版者SPRINGER/PLENUM PUBLISHERS
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4176
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Junhong
作者单位1.Univ Chinese Acad Sci, State Key Lab Comp Architecture, Inst Comp Technol, Chinese Acad Sci, Beijing, Peoples R China
2.Norwegian Univ Sci & Technol, Dept Comp Sci, Trondheim, Norway
推荐引用方式
GB/T 7714
Liu, Junhong,He, Xin,Liu, Weifeng,et al. Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication[J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING,2019,47(3):403-417.
APA Liu, Junhong,He, Xin,Liu, Weifeng,&Tan, Guangming.(2019).Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication.INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING,47(3),403-417.
MLA Liu, Junhong,et al."Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication".INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING 47.3(2019):403-417.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Junhong]的文章
[He, Xin]的文章
[Liu, Weifeng]的文章
百度学术
百度学术中相似的文章
[Liu, Junhong]的文章
[He, Xin]的文章
[Liu, Weifeng]的文章
必应学术
必应学术中相似的文章
[Liu, Junhong]的文章
[He, Xin]的文章
[Liu, Weifeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。