CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Joint optimization of data sensing and computing in the air-ground collaborative inference framework: A multi-agent hybrid-action DRL approach
Fan, Xiaokun1,2; Chen, Yali1; Liu, Min1,3,4; Zhu, Yuchen1; Li, Zhongcheng1,3
2025-10-01
发表期刊COMPUTER NETWORKS
ISSN1389-1286
卷号270页码:13
摘要Unmanned aerial vehicles (UAVs) are increasingly used for surveillance applications to take videos for Points of Interests (PoIs). Then, the sampled video data is fed into deep neural networks (DNNs) for inference. Due to the high computational complexity of DNNs, directly running DNN inference tasks on resource-constrained UAVs is intractable. To alleviate this issue, edge computing provides a promising solution by offloading tasks to the ground edge servers (ESs). However, how to flexibly schedule and tradeoff various resources for high-accuracy and low-delay inference is a challenge, especially in the complex scenario where video data sensing and DNN task processing are tightly coupled. Thus, this paper studies joint optimization for data sensing and computing in the air-ground collaborative inference framework. Specifically, the models for multi-UAV collaborative data sensing and collaborative inference between multiple UAVs and multiple ESs are designed. Then, we formulate an inference delay minimization problem by jointly optimizing UAVs' 3D trajectories, number of sampled video frames and computation offloading, while satisfying accuracy, UAV energy budget and sensing mission requirements. Considering mixed continuous-discrete optimization variables, we propose a multi-agent proximal policy optimization (MAPPO) algorithm with a hybrid action space, called "MAPPO-HA", to learn the optimal policies. Finally, simulation results demonstrate that our algorithm can achieve better performance compared with other optimization approaches.
关键词Edge computing Joint sensing and computing Multi-agent deep reinforcement learning Unmanned aerial vehicle Video surveillance
DOI10.1016/j.comnet.2025.111540
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62202449] ; National Natural Science Foundation of China[62472410] ; National Key Research and Development Program of China[2021YFB2900102]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001536317400003
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41769
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Shanghai Satellite Network Res Inst Co Ltd, Shanghai Key Lab Satellite Network, State Key Lab Satellite Network, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Zhongguancun Lab, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Fan, Xiaokun,Chen, Yali,Liu, Min,et al. Joint optimization of data sensing and computing in the air-ground collaborative inference framework: A multi-agent hybrid-action DRL approach[J]. COMPUTER NETWORKS,2025,270:13.
APA Fan, Xiaokun,Chen, Yali,Liu, Min,Zhu, Yuchen,&Li, Zhongcheng.(2025).Joint optimization of data sensing and computing in the air-ground collaborative inference framework: A multi-agent hybrid-action DRL approach.COMPUTER NETWORKS,270,13.
MLA Fan, Xiaokun,et al."Joint optimization of data sensing and computing in the air-ground collaborative inference framework: A multi-agent hybrid-action DRL approach".COMPUTER NETWORKS 270(2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Xiaokun]的文章
[Chen, Yali]的文章
[Liu, Min]的文章
百度学术
百度学术中相似的文章
[Fan, Xiaokun]的文章
[Chen, Yali]的文章
[Liu, Min]的文章
必应学术
必应学术中相似的文章
[Fan, Xiaokun]的文章
[Chen, Yali]的文章
[Liu, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。