CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Unsupervised feature selection via unifying distribution alignment and structure preservation
Cao, Chunxu1; Zhang, Yong2; Ai, Yanke2,5; Zhang, Qiang3,4
2026-02-01
发表期刊INFORMATION FUSION
ISSN1566-2535
卷号126页码:20
摘要The increasing complexity of high-dimensional data demands effective feature selection techniques that preserve both global distributional characteristics and local structures. However, existing methods often encounter a fundamental trade-off between preserving global distributional fidelity and maintaining local geometric structures, leading to information loss. This work presents a novel kernel-enhanced Gromov-Wasserstein alignment framework that unifies global distribution alignment and local structure preservation. Our approach leverages Gromov-Wasserstein distance and the kernel trick to enhance metric space comparisons, effectively capturing nonlinear relationships while improving stability in noisy data. To ensure scalability, we develop an efficient randomized filter algorithm, balancing computational efficiency with feature diversity. Extensive experiments across 20 benchmark datasets demonstrate the superior performance of our method, showing that it surpasses state-of-the-art feature selection techniques. These results highlight the effectiveness of integrating distributional alignment and structure preservation for unsupervised feature selection in high-dimensional data analysis.
关键词Feature selection Filter feature selection method Distributional distances Gromov-Wasserstein distance Kernel trick Extreme gradient boosting
DOI10.1016/j.inffus.2025.103544
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[12272054] ; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College[2022B1212010006] ; Guangdong and Hong Kong Universities '1+1+1' Joint Research Collaboration Scheme
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:001548072500002
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41763
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Qiang
作者单位1.Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
2.China Unicom, Unicom Digital Technol, Beijing 100013, Peoples R China
3.Beijing Normal Univ, Res Ctr Math, Zhuhai 519087, Peoples R China
4.Beijing Normal Hong Kong Baptist Univ, Guangdong Prov Key Lab Interdisciplinary Res & App, Zhuhai 519087, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cao, Chunxu,Zhang, Yong,Ai, Yanke,et al. Unsupervised feature selection via unifying distribution alignment and structure preservation[J]. INFORMATION FUSION,2026,126:20.
APA Cao, Chunxu,Zhang, Yong,Ai, Yanke,&Zhang, Qiang.(2026).Unsupervised feature selection via unifying distribution alignment and structure preservation.INFORMATION FUSION,126,20.
MLA Cao, Chunxu,et al."Unsupervised feature selection via unifying distribution alignment and structure preservation".INFORMATION FUSION 126(2026):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Chunxu]的文章
[Zhang, Yong]的文章
[Ai, Yanke]的文章
百度学术
百度学术中相似的文章
[Cao, Chunxu]的文章
[Zhang, Yong]的文章
[Ai, Yanke]的文章
必应学术
必应学术中相似的文章
[Cao, Chunxu]的文章
[Zhang, Yong]的文章
[Ai, Yanke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。