Institute of Computing Technology, Chinese Academy IR
| Unsupervised feature selection via unifying distribution alignment and structure preservation | |
| Cao, Chunxu1; Zhang, Yong2; Ai, Yanke2,5; Zhang, Qiang3,4 | |
| 2026-02-01 | |
| 发表期刊 | INFORMATION FUSION
![]() |
| ISSN | 1566-2535 |
| 卷号 | 126页码:20 |
| 摘要 | The increasing complexity of high-dimensional data demands effective feature selection techniques that preserve both global distributional characteristics and local structures. However, existing methods often encounter a fundamental trade-off between preserving global distributional fidelity and maintaining local geometric structures, leading to information loss. This work presents a novel kernel-enhanced Gromov-Wasserstein alignment framework that unifies global distribution alignment and local structure preservation. Our approach leverages Gromov-Wasserstein distance and the kernel trick to enhance metric space comparisons, effectively capturing nonlinear relationships while improving stability in noisy data. To ensure scalability, we develop an efficient randomized filter algorithm, balancing computational efficiency with feature diversity. Extensive experiments across 20 benchmark datasets demonstrate the superior performance of our method, showing that it surpasses state-of-the-art feature selection techniques. These results highlight the effectiveness of integrating distributional alignment and structure preservation for unsupervised feature selection in high-dimensional data analysis. |
| 关键词 | Feature selection Filter feature selection method Distributional distances Gromov-Wasserstein distance Kernel trick Extreme gradient boosting |
| DOI | 10.1016/j.inffus.2025.103544 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[12272054] ; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College[2022B1212010006] ; Guangdong and Hong Kong Universities '1+1+1' Joint Research Collaboration Scheme |
| WOS研究方向 | Computer Science |
| WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
| WOS记录号 | WOS:001548072500002 |
| 出版者 | ELSEVIER |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/41763 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Zhang, Qiang |
| 作者单位 | 1.Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China 2.China Unicom, Unicom Digital Technol, Beijing 100013, Peoples R China 3.Beijing Normal Univ, Res Ctr Math, Zhuhai 519087, Peoples R China 4.Beijing Normal Hong Kong Baptist Univ, Guangdong Prov Key Lab Interdisciplinary Res & App, Zhuhai 519087, Peoples R China 5.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Cao, Chunxu,Zhang, Yong,Ai, Yanke,et al. Unsupervised feature selection via unifying distribution alignment and structure preservation[J]. INFORMATION FUSION,2026,126:20. |
| APA | Cao, Chunxu,Zhang, Yong,Ai, Yanke,&Zhang, Qiang.(2026).Unsupervised feature selection via unifying distribution alignment and structure preservation.INFORMATION FUSION,126,20. |
| MLA | Cao, Chunxu,et al."Unsupervised feature selection via unifying distribution alignment and structure preservation".INFORMATION FUSION 126(2026):20. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论