CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Major depressive disorder detection via temporal-frequency-spatial transformer with sub-domain knowledge alignment using EEG
Xu, Chen-Yang1; Fan, Fei-Yi2; Zhao, Li-Xuan1; Jin, Li-Cheng1; Zhang, Yong-Hui3; Meng, Qing-Hao1
2026
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号193页码:12
摘要Major Depressive Disorder (MDD) is a common mental illness that seriously jeopardizes the physical and mental health of patients. Accurate detection of MDD is crucial for treatment. Currently, there are significant differences in the EEG signals of each MDD patient, leading to lower accuracy of cross-subject MDD detection. Transformer-based methods have been used by scholars to detect MDD using electroencephalogram (EEG) data, but these methods often neglect the frequency features, focusing primarily on global domain adaptation (DA) while ignoring sub-domain alignment, resulting in loss of fine-grained discriminative information. To address this, we incorporate fine-grained frequency features to improve sub-domain alignment in DA rather than relying solely on global feature alignment. Building on the above analysis, we propose the TFST-SDKA model, a temporal-frequency-spatial Transformer (TFST) integrated with a sub-domain knowledge alignment (SDKA) method for MDD detection. The SDKA module classifies subjects into distinct sub-domains based on their labels by extracting fine-grained discriminative information from each subject. This process helps bridge the gap between source and target domains, enhancing the model's generalization. In addition, we propose a frequency attention (FA) mechanism, which uses discrete cosine transform (DCT) to convert EEG feature maps into the frequency domain. The FA extracts multiple frequency information of EEG signals associated with MDD and combines these frequency data to enhance the model's representational capability. As a result, the TFST-SDKA model improves EEG feature representation and aligns source and target domain features. Extensive experiments conducted on the MODMA and PRED+CT datasets demonstrate that our proposed TFST-SDKA model outperforms state-of-the-art (SOTA) methods in MDD detection tasks. Specifically, our method exceeds the SOTA methods by 1.42 % on the MODMA dataset and 1.16% on the PRED+CT dataset in terms of accuracy.
关键词MDD detection Sub-domain knowledge alignment (SDKA) Temporal-frequency-spatial transformer (TFST) Frequency attention (FA)
DOI10.1016/j.neunet.2025.107965
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62203321] ; China Postdoctoral Science Foundation[2021M692390]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:001561923800004
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41733
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Meng, Qing-Hao
作者单位1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Tianjin Anding Hosp, Dept Psychiat, Tianjin 300222, Peoples R China
推荐引用方式
GB/T 7714
Xu, Chen-Yang,Fan, Fei-Yi,Zhao, Li-Xuan,et al. Major depressive disorder detection via temporal-frequency-spatial transformer with sub-domain knowledge alignment using EEG[J]. NEURAL NETWORKS,2026,193:12.
APA Xu, Chen-Yang,Fan, Fei-Yi,Zhao, Li-Xuan,Jin, Li-Cheng,Zhang, Yong-Hui,&Meng, Qing-Hao.(2026).Major depressive disorder detection via temporal-frequency-spatial transformer with sub-domain knowledge alignment using EEG.NEURAL NETWORKS,193,12.
MLA Xu, Chen-Yang,et al."Major depressive disorder detection via temporal-frequency-spatial transformer with sub-domain knowledge alignment using EEG".NEURAL NETWORKS 193(2026):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Chen-Yang]的文章
[Fan, Fei-Yi]的文章
[Zhao, Li-Xuan]的文章
百度学术
百度学术中相似的文章
[Xu, Chen-Yang]的文章
[Fan, Fei-Yi]的文章
[Zhao, Li-Xuan]的文章
必应学术
必应学术中相似的文章
[Xu, Chen-Yang]的文章
[Fan, Fei-Yi]的文章
[Zhao, Li-Xuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。