CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DomainVerse: A Benchmark Towards Real-World Distribution Shifts for Training-Free Adaptive Domain Generalization
Hou, Feng1,2; Yuan, Jin3,4; Yang, Ying5; Zhang, Yao5; Liu, Yang1,2; Zhang, Yang5; Zhong, Cheng5; Shi, Zhongchao5; Fan, Jianping5; He, Zhiqiang1,2,6; Rui, Yong5
2025
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号27页码:6648-6660
摘要Traditional cross-domain tasks, including unsupervised domain adaptation (UDA), domain generalization (DG) and test-time adaptation (TTA), rely heavily on the training model by source domain data whether for specific or arbitrary target domains. With the recent advance of vision-language models (VLMs), recognized as natural source models that can be transferred to various downstream tasks without any parameter training, we propose a novel cross-domain task directly combining the strengths of both UDA and DG, named Training-Free Adaptive Domain Generalization (TF-ADG). However, current cross-domain datasets have many limitations, such as unrealistic domains, unclear domain definitions, and the inability to fine-grained domain decomposition, which hinder the real-world application of current cross-domain models due to the lack of accurate and fair evaluation of fine-grained realistic domains. These insights motivate us to establish a novel realistic benchmark for TF-ADG. Benefiting from the introduced hierarchical definition of domain shifts, our proposed dataset DomainVerse addresses these issues by providing about 0.5 million images from 390 realistic, hierarchical, and balanced domains, allowing for decomposition across multiple domains within each image. With the help of the constructed DomainVerse and VLMs, we further propose two algorithms called Domain CLIP and Domain++ CLIP for training-free adaptive domain generalization. Extensive and comprehensive experiments demonstrate the significance of the dataset and the effectiveness of the proposed methods.
关键词Adaptation models Training Benchmark testing Picture archiving and communication systems Data models Image color analysis Computational modeling Data mining Training data Painting DomainVerse training-free adaptive domain generalization vision-language models
DOI10.1109/TMM.2025.3586108
收录类别SCI
语种英语
资助项目AI Lab ; Lenovo Research
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:001579069300018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41673
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yao; He, Zhiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100000, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100000, Peoples R China
3.Southeast Univ, Sch Comp Sci & Engn, Minist Educ, Nanjing 211189, Peoples R China
4.Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing 211189, Peoples R China
5.Lenovo Res, AI Lab, Beijing 100000, Peoples R China
6.Lenovo Ltd, Beijing 100000, Peoples R China
推荐引用方式
GB/T 7714
Hou, Feng,Yuan, Jin,Yang, Ying,et al. DomainVerse: A Benchmark Towards Real-World Distribution Shifts for Training-Free Adaptive Domain Generalization[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2025,27:6648-6660.
APA Hou, Feng.,Yuan, Jin.,Yang, Ying.,Zhang, Yao.,Liu, Yang.,...&Rui, Yong.(2025).DomainVerse: A Benchmark Towards Real-World Distribution Shifts for Training-Free Adaptive Domain Generalization.IEEE TRANSACTIONS ON MULTIMEDIA,27,6648-6660.
MLA Hou, Feng,et al."DomainVerse: A Benchmark Towards Real-World Distribution Shifts for Training-Free Adaptive Domain Generalization".IEEE TRANSACTIONS ON MULTIMEDIA 27(2025):6648-6660.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Feng]的文章
[Yuan, Jin]的文章
[Yang, Ying]的文章
百度学术
百度学术中相似的文章
[Hou, Feng]的文章
[Yuan, Jin]的文章
[Yang, Ying]的文章
必应学术
必应学术中相似的文章
[Hou, Feng]的文章
[Yuan, Jin]的文章
[Yang, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。