CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Unifying Visual Attribute Learning with Object Recognition in a Multiplicative Framework
Liang, Kongming1,2; Chang, Hong1,2; Ma, Bingpeng1,2; Shan, Shiguang1,2,3; Chen, Xilin1,2
2019-07-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号41期号:7页码:1747-1760
摘要Attributes are mid-level semantic properties of objects. Recent research has shown that visual attributes can benefit many typical learning problems in computer vision community. However, attribute learning is still a challenging problem as the attributes may not always be predictable directly from input images and the variation of visual attributes is sometimes large across categories. In this paper, we propose a unified multiplicative framework for attribute learning, which tackles the key problems. Specifically, images and category information are jointly projected into a shared feature space, where the latent factors are disentangled and multiplied to fulfil attribute prediction. The resulting attribute classifier is category-specific instead of being shared by all categories. Moreover, our model can leverage auxiliary data to enhance the predictive ability of attribute classifiers, which can reduce the effort of instance-level attribute annotation to some extent. By integrated into an existing deep learning framework, our model can both accurately predict attributes and learn efficient image representations. Experimental results show that our method achieves superior performance on both instance-level and category-level attribute prediction. For zero-shot learning based on visual attributes and human-object interaction recognition, our method can improve the state-of-the-art performance on several widely used datasets.
关键词Attribute learning zero-shot learning image understanding
DOI10.1109/TPAMI.2018.2836461
收录类别SCI
语种英语
资助项目973 Program[2015CB351802] ; Natural Science Foundation of China (NSFC)[61390515] ; Natural Science Foundation of China (NSFC)[61390511] ; Natural Science Foundation of China (NSFC)[61572465] ; Natural Science Foundation of China (NSFC)[61650202]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000470972300017
出版者IEEE COMPUTER SOC
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4166
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chang, Hong
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liang, Kongming,Chang, Hong,Ma, Bingpeng,et al. Unifying Visual Attribute Learning with Object Recognition in a Multiplicative Framework[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2019,41(7):1747-1760.
APA Liang, Kongming,Chang, Hong,Ma, Bingpeng,Shan, Shiguang,&Chen, Xilin.(2019).Unifying Visual Attribute Learning with Object Recognition in a Multiplicative Framework.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,41(7),1747-1760.
MLA Liang, Kongming,et al."Unifying Visual Attribute Learning with Object Recognition in a Multiplicative Framework".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 41.7(2019):1747-1760.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liang, Kongming]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
百度学术
百度学术中相似的文章
[Liang, Kongming]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
必应学术
必应学术中相似的文章
[Liang, Kongming]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。