CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SAQE: Complex Logical Query Answering via Semantic-Aware Representation Learning
Cao, Zongsheng1,2,3; Xu, Qianqian4; Yang, Zhiyong5; He, Yuan6; Cao, Xiaochun7; Huang, Qingming4,8,9
2025-11-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号37期号:11页码:6651-6665
摘要Performing complex First-Order Logic (FOL) queries on knowledge graphs is crucial for advancing knowledge reasoning. Knowledge graphs encapsulate rich semantic interactions among entities, encompassing both explicit structural knowledge represented by triples (e1,r,e2) and implicit relational knowledge through multi-hop paths (e1(r1)->& ctdot;e3 & ctdot;(r2)-> e2). Traditional models often focus solely on either triple-level or path-level knowledge, overlooking the benefits of integrating both to enhance logic query answering. This oversight leads to suboptimal representation learning and inefficient query reasoning. To overcome these challenges, we introduce a new Semantic-Aware representation learning model for Query-answering Embeddings (SAQE). Specifically, SAQE employs a joint learning approach that integrates triple-level and path-level knowledge semantics and captures both explicit and implicit contextual nuances within the knowledge graph, yielding more accurate and contextually relevant representations. To efficiently handle the large combinatorial search spaces in FOL reasoning, we propose a novel hierarchical reasoning optimization strategy by a multi-hop tree thus optimizing subqueries rooted at variable nodes in a divide-and-conquer manner. Theoretical analysis confirms that SAQE effectively supports various types of FOL reasoning and enhances generalizations for query answering. Extensive experiments demonstrate that our model achieves state-of-the-art performance across several established datasets.
关键词Cognition Knowledge graphs Representation learning Semantics Optimization Logic Accuracy Data mining Training Artificial intelligence Knowledge graph logic query answering semantic-aware learning hierarchical reasoning optimization
DOI10.1109/TKDE.2025.3603877
收录类别SCI
语种英语
资助项目National Key R#x0026;D Program of China[2018AAA0102000] ; National Natural Science Foundation of China[62236008] ; National Natural Science Foundation of China[62441232] ; National Natural Science Foundation of China[U21B2038] ; National Natural Science Foundation of China[U23B2051] ; National Natural Science Foundation of China[62122075] ; Youth Innovation Promotion Association CAS ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0680201]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:001589873500025
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41661
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Qianqian; Huang, Qingming
作者单位1.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur SKLOIS, Beijing 100045, Peoples R China
2.Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 101408, Peoples R China
3.Shanghai AI Lab, Shanghai 200231, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
6.Alibaba Grp, Secur Dept, Hangzhou 311121, Peoples R China
7.Sun Yat Sen Univ, Sch Cyber Sci & Technol, Shenzhen Campus, Shenzhen 518107, Peoples R China
8.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Key Lab Big Data Min & Knowledge Management BDKM, Beijing 101408, Peoples R China
9.Peng Cheng Lab, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Cao, Zongsheng,Xu, Qianqian,Yang, Zhiyong,et al. SAQE: Complex Logical Query Answering via Semantic-Aware Representation Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2025,37(11):6651-6665.
APA Cao, Zongsheng,Xu, Qianqian,Yang, Zhiyong,He, Yuan,Cao, Xiaochun,&Huang, Qingming.(2025).SAQE: Complex Logical Query Answering via Semantic-Aware Representation Learning.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,37(11),6651-6665.
MLA Cao, Zongsheng,et al."SAQE: Complex Logical Query Answering via Semantic-Aware Representation Learning".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 37.11(2025):6651-6665.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Zongsheng]的文章
[Xu, Qianqian]的文章
[Yang, Zhiyong]的文章
百度学术
百度学术中相似的文章
[Cao, Zongsheng]的文章
[Xu, Qianqian]的文章
[Yang, Zhiyong]的文章
必应学术
必应学术中相似的文章
[Cao, Zongsheng]的文章
[Xu, Qianqian]的文章
[Yang, Zhiyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。