CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A hybrid approach to formulaic alpha discovery with large language model assistance
Yu, Shuo1,2; Xue, Hong-Yan1,2; Ao, Xiang1,2,3; He, Qing1,2
2026-02-01
发表期刊FRONTIERS OF COMPUTER SCIENCE
ISSN2095-2228
卷号20期号:2页码:14
摘要In the domain of quantitative trading, the imperative is to translate historical financial data into predictive signals, commonly referred to as alpha factors, which serves to anticipate future market trends. Notably, formulaic alphas that are expressible via explicit mathematical formulas are highly sought after by certain investors for better interpretability. The evolving landscape of technology has witnessed the increasing deployment of large language models (LLMs) across various domains, which raises the question of whether LLMs can be effective in the context of formulaic alpha-mining tasks. This paper presents several paradigms aimed at integrating LLMs into the optimization loop of alpha mining, including scenarios where an LLM serves as the sole alpha generator, as well as instances where LLMs enhance existing frameworks. Empirical evaluations on real-world stock data demonstrate significant performance improvements, with our hybrid method achieving an average information coefficient (IC) of 0.0515, a 75% improvement over the baseline - a state-of-the-art reinforcement learning-based framework; backtesting further reveals a cumulative excess return more than double the baseline framework. These results underscore the potential of LLM-enhanced approaches in advancing formulaic alpha discovery and driving innovation in quantitative trading.
关键词computational finance stock trend forecasting large language model
DOI10.1007/s11704-025-41061-5
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2022YFC3303302] ; National Natural Science Foundation of China[62476263] ; National Natural Science Foundation of China[U2436209] ; Project of Youth Innovation Promotion Association CAS, Beijing Nova Program[20230484430] ; Innovation Funding of ICT, CAS[E461060]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001596592800006
出版者HIGHER EDUCATION PRESS
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41631
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ao, Xiang; He, Qing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab AI Safety, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Inst Intelligent Comp Technol, Suzhou 215000, Peoples R China
推荐引用方式
GB/T 7714
Yu, Shuo,Xue, Hong-Yan,Ao, Xiang,et al. A hybrid approach to formulaic alpha discovery with large language model assistance[J]. FRONTIERS OF COMPUTER SCIENCE,2026,20(2):14.
APA Yu, Shuo,Xue, Hong-Yan,Ao, Xiang,&He, Qing.(2026).A hybrid approach to formulaic alpha discovery with large language model assistance.FRONTIERS OF COMPUTER SCIENCE,20(2),14.
MLA Yu, Shuo,et al."A hybrid approach to formulaic alpha discovery with large language model assistance".FRONTIERS OF COMPUTER SCIENCE 20.2(2026):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Shuo]的文章
[Xue, Hong-Yan]的文章
[Ao, Xiang]的文章
百度学术
百度学术中相似的文章
[Yu, Shuo]的文章
[Xue, Hong-Yan]的文章
[Ao, Xiang]的文章
必应学术
必应学术中相似的文章
[Yu, Shuo]的文章
[Xue, Hong-Yan]的文章
[Ao, Xiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。