CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FreeMask3D: Zero-Shot Point Cloud Instance Segmentation Without 3D Training
Zhou, Mingquan1,2; Wu, Xiaodong1,2; He, Chen1,2; Wang, Ruiping1,2; Chen, Xilin1,2
2025-12-01
发表期刊IEEE ROBOTICS AND AUTOMATION LETTERS
ISSN2377-3766
卷号10期号:12页码:12301-12308
摘要Point cloud instance segmentation is crucial for 3D scene understanding in robotics. However, existing methods heavily rely on learning-based approaches that require large amounts of annotated 3D data, resulting in high annotation costs. Therefore, developing cost-effective and data-efficient solutions is essential. To this end, we propose FreeMask3D, a novel approach that achieves 3D point cloud instance segmentation without requiring any 3D annotation or additional training. Our method consists of two main steps: instance localization and instance recognition. For instance localization, we leverage pre-trained 2D instance segmentation models to perform instance segmentation on corresponding RGB-D images. These results are then mapped to 3D space and fused across frames to generate the final 3D instance masks. For instance recognition, the OpenSem module infers the category of each instance by leveraging the generalization capabilities of cross-modal large models, such as CLIP, to enable open-vocabulary semantic recognition. Experiments and ablation studies on four challenging benchmarks-ScanNetv2, ScanNet200, S3DIS, and Replica-demonstrate that FreeMask3D achieves competitive or superior performance compared to state-of-the-art methods, despite without 3D supervision. Qualitative results highlight its open-vocabulary capabilities based on color, affordance, or uncommon phrase description.
关键词Three-dimensional displays Instance segmentation Point cloud compression Semantics Training Solid modeling Annotations Visualization Cameras Adaptation models Object detection segmentation and categorization deep learning for visual perception embodied cognitive science
DOI10.1109/LRA.2025.3621977
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2021ZD0111901] ; National Key R&D Program of China[2023YFF1105104] ; Natural Science Foundation of China[62495082] ; Natural Science Foundation of China[62461160331] ; Natural Science Foundation of China[U21B2025]
WOS研究方向Robotics
WOS类目Robotics
WOS记录号WOS:001600704200005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41579
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ruiping
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab AI Safety, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Mingquan,Wu, Xiaodong,He, Chen,et al. FreeMask3D: Zero-Shot Point Cloud Instance Segmentation Without 3D Training[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2025,10(12):12301-12308.
APA Zhou, Mingquan,Wu, Xiaodong,He, Chen,Wang, Ruiping,&Chen, Xilin.(2025).FreeMask3D: Zero-Shot Point Cloud Instance Segmentation Without 3D Training.IEEE ROBOTICS AND AUTOMATION LETTERS,10(12),12301-12308.
MLA Zhou, Mingquan,et al."FreeMask3D: Zero-Shot Point Cloud Instance Segmentation Without 3D Training".IEEE ROBOTICS AND AUTOMATION LETTERS 10.12(2025):12301-12308.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Mingquan]的文章
[Wu, Xiaodong]的文章
[He, Chen]的文章
百度学术
百度学术中相似的文章
[Zhou, Mingquan]的文章
[Wu, Xiaodong]的文章
[He, Chen]的文章
必应学术
必应学术中相似的文章
[Zhou, Mingquan]的文章
[Wu, Xiaodong]的文章
[He, Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。