CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping
Wu, Yang1,2; Zhang, Feilong1; Yang, Kuo3,4; Fang, Shuangsang2; Bu, Dechao2; Li, Hui2; Sun, Liang2; Hu, Hairuo2; Gao, Kuo1; Wang, Wei1; Zhou, Xuezhong3,4; Zhao, Yi1,2; Chen, Jianxin1
2019-01-08
发表期刊NUCLEIC ACIDS RESEARCH
ISSN0305-1048
卷号47期号:D1页码:D1110-D1117
摘要Recently, the pharmaceutical industry has heavily emphasized phenotypic drug discovery (PDD), which relies primarily on knowledge about phenotype changes associated with diseases. Traditional Chinese medicine (TCM) provides a massive amount of information on natural products and the clinical symptoms they are used to treat, which are the observable disease phenotypes that are crucial for clinical diagnosis and treatment. Curating knowledge of TCM symptoms and their relationships to herbs and diseases will provide both candidate leads and screening directions for evidence-based PDD programs. Therefore, we present SymMap, an integrative database of traditional Chinese medicine enhanced by symptom mapping. We manually curated 1717 TCM symptoms and related them to 499 herbs and 961 symptoms used in modern medicine based on a committee of 17 leading experts practicing TCM. Next, we collected 5235 diseases associated with these symptoms, 19 595 herbal constituents (ingredients) and 4302 target genes, and built a large heterogeneous network containing all of these components. Thus, SymMap integrates TCM with modern medicine in common aspects at both the phenotypic and molecular levels. Furthermore, we inferred all pairwise relationships among SymMap components using statistical tests to give pharmaceutical scientists the ability to rank and filter promising results to guide drug discovery. The SymMap database can be accessed at http://www.symmap.org/ and https://www.bioinfo.org/symmap.
DOI10.1093/nar/gky1021
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFC1313000] ; National Key Research and Development Program of China[2018YFC1313001] ; National Key Research and Development Program of China[2017YFC1703506] ; National Natural Science Foundation for Young Scholars of China[31701141] ; National Natural Science Foundation for Young Scholars of China[31701149] ; National Natural Science Foundation for Young Scholars of China[31501066] ; National Natural Science Foundation of China[91740113] ; National Natural Science Foundation of China[81522051] ; Innovation Project for Institute of Computing Technology, CAS[20186060]
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemistry & Molecular Biology
WOS记录号WOS:000462587400152
出版者OXFORD UNIV PRESS
引用统计
被引频次:305[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4156
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, Xuezhong; Zhao, Yi; Chen, Jianxin
作者单位1.Beijing Univ Chinese Med, Beijing 100029, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Adv Comp Res Ctr, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
4.Beijing Jiaotong Univ, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yang,Zhang, Feilong,Yang, Kuo,et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping[J]. NUCLEIC ACIDS RESEARCH,2019,47(D1):D1110-D1117.
APA Wu, Yang.,Zhang, Feilong.,Yang, Kuo.,Fang, Shuangsang.,Bu, Dechao.,...&Chen, Jianxin.(2019).SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping.NUCLEIC ACIDS RESEARCH,47(D1),D1110-D1117.
MLA Wu, Yang,et al."SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping".NUCLEIC ACIDS RESEARCH 47.D1(2019):D1110-D1117.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Yang]的文章
[Zhang, Feilong]的文章
[Yang, Kuo]的文章
百度学术
百度学术中相似的文章
[Wu, Yang]的文章
[Zhang, Feilong]的文章
[Yang, Kuo]的文章
必应学术
必应学术中相似的文章
[Wu, Yang]的文章
[Zhang, Feilong]的文章
[Yang, Kuo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。