CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
GPU-Based Hierarchical Motion Estimation for High Efficiency Video Coding
Luo, Falei1,2,3; Wang, Shanshe3; Wang, Shiqi4; Zhang, Xinfeng5; Ma, Siwei3; Gao, Wen3
2019-04-01
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号21期号:4页码:851-862
摘要Motion estimation (ME) plays a crucial role in removing the temporal redundancy for video compression. However, during the encoding process a substantial computational burden is imposed by ME due to the exhaustive evaluations of possible candidates within the searching window. In view of the increasing computing capacity of GPU, we propose a GPU-based low delay parallel ME scheme for high efficiency video coding (HEVC). In particular, considering the quadtree coding structure of HEVC, we achieve the parallelization in a hierarchical way by optimizing the ME process in a coding tree unit (CTU), prediction unit (PU), and motion vector (MV) layers. Specifically, in the CTU layer, a novel motion vector predictor determination scheme is proposed to alleviate the side effects of inaccurate MV prediction due to the removal of the CTU-level dependency. In the PU layer, a novel indexing table is particularly designed to realize an efficient cost derivation strategy. As such, the cost of each PU can be computed in a convenient and efficient manner. In an MV layer, we propose a compact descriptor to represent MV and its corresponding cost as a whole, such that the redundant branches can be further avoided in the searching process. With such an optimization strategy, the proposed scheme can completely save the encoding time for ME on CPU. Experimental results demonstrate that the proposed scheme can achieve 41% encoding time savings with the ME acceleration up to 12.7 times, and the incurred BD-BR loss is only 0.52% on average. Moreover, further experimental results show that the proposed GPU-based ME can achieve up to 200 times acceleration compared to the full search ME on CPU.
关键词GPU motion estimation High Efficiency Video Coding
DOI10.1109/TMM.2018.2867260
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2015CB351800] ; National Natural Science Foundation of China[61632001] ; National Postdoctoral Program for Innovative Talents[BX201600006] ; Top-Notch Young Talents Program of China ; Hong Kong RGC Early Career Scheme[9048122 (CityU 21211018)] ; City University of Hong Kong[7200539/CS] ; NVIDIA NVAIL program ; Shenzhen Peacock Plan
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000462413700004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4148
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Siwei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Beijing 100871, Peoples R China
4.City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong 999077, Peoples R China
5.Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
推荐引用方式
GB/T 7714
Luo, Falei,Wang, Shanshe,Wang, Shiqi,et al. GPU-Based Hierarchical Motion Estimation for High Efficiency Video Coding[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2019,21(4):851-862.
APA Luo, Falei,Wang, Shanshe,Wang, Shiqi,Zhang, Xinfeng,Ma, Siwei,&Gao, Wen.(2019).GPU-Based Hierarchical Motion Estimation for High Efficiency Video Coding.IEEE TRANSACTIONS ON MULTIMEDIA,21(4),851-862.
MLA Luo, Falei,et al."GPU-Based Hierarchical Motion Estimation for High Efficiency Video Coding".IEEE TRANSACTIONS ON MULTIMEDIA 21.4(2019):851-862.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Falei]的文章
[Wang, Shanshe]的文章
[Wang, Shiqi]的文章
百度学术
百度学术中相似的文章
[Luo, Falei]的文章
[Wang, Shanshe]的文章
[Wang, Shiqi]的文章
必应学术
必应学术中相似的文章
[Luo, Falei]的文章
[Wang, Shanshe]的文章
[Wang, Shiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。