CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Self-learning and embedding based entity alignment
Guan, Saiping1,2; Jin, Xiaolong1,2; Wang, Yuanzhuo1,2; Jia, Yantao1,2; Shen, Huawei1,2; Li, Zixuan1,2; Cheng, Xueqi1,2
2019-05-01
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
卷号59期号:2页码:361-386
摘要Entity alignment aims to identify semantical matchings between entities from different groups. Traditional methods (e.g., attribute comparison-based methods, graph operation-based methods and active learning ones) are usually supervised by labeled data as prior knowledge. Since it is not trivial to label data for training, researchers have then turned to unsupervised methods, and have thus developed similarity-based methods, probabilistic methods, graphical model-based methods, etc. In addition, structure or class information is further explored. As an important part of a knowledge graph, entities contain rich semantical information that can be well learned by knowledge graph embedding methods in low-dimensional vector spaces. However, existing methods for entity alignment have paid little attention to knowledge graph embedding. In this paper, we propose a self-learning and embedding based method for entity alignment, thus called SEEA, to iteratively find semantically aligned entity pairs, which makes full use of semantical information contained in the attributes of entities. Experiments on three realistic datasets and comparison with a few baseline methods validate the effectiveness and merits of the proposed method.
关键词Entity alignment Knowledge graph Self-learning Embedding
DOI10.1007/s10115-018-1191-0
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB1000902] ; National Key Research and Development Program of China[2017YFC0820404] ; National Natural Science Foundation of China[61772501] ; National Natural Science Foundation of China[61572473] ; National Natural Science Foundation of China[61572469] ; National Natural Science Foundation of China[91646120]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000461572500005
出版者SPRINGER LONDON LTD
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4144
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jin, Xiaolong
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Guan, Saiping,Jin, Xiaolong,Wang, Yuanzhuo,et al. Self-learning and embedding based entity alignment[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2019,59(2):361-386.
APA Guan, Saiping.,Jin, Xiaolong.,Wang, Yuanzhuo.,Jia, Yantao.,Shen, Huawei.,...&Cheng, Xueqi.(2019).Self-learning and embedding based entity alignment.KNOWLEDGE AND INFORMATION SYSTEMS,59(2),361-386.
MLA Guan, Saiping,et al."Self-learning and embedding based entity alignment".KNOWLEDGE AND INFORMATION SYSTEMS 59.2(2019):361-386.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guan, Saiping]的文章
[Jin, Xiaolong]的文章
[Wang, Yuanzhuo]的文章
百度学术
百度学术中相似的文章
[Guan, Saiping]的文章
[Jin, Xiaolong]的文章
[Wang, Yuanzhuo]的文章
必应学术
必应学术中相似的文章
[Guan, Saiping]的文章
[Jin, Xiaolong]的文章
[Wang, Yuanzhuo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。