CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Deep Representation Learning With Part Loss for Person Re-Identification
Yao, Hantao1; Zhang, Shiliang2; Hong, Richang3; Zhang, Yongdong4; Xu, Changsheng1,5; Tian, Qi6
2019-06-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号28期号:6页码:2860-2871
摘要Learning discriminative representations for unseen person images is critical for person re-identification (ReID). Most of the current approaches learn deep representations in classification tasks, which essentially minimize the empirical classification risk on the training set. As shown in our experiments, such representations easily get over-fitted on a discriminative human body part on the training set. To gain the discriminative power on unseen person images, we propose a deep representation learning procedure named part loss network, to minimize both the empirical classification risk on training person images and the representation learning risk on unseen person images. The representation learning risk is evaluated by the proposed part loss, which automatically detects human body parts and computes the person classification loss on each part separately. Compared with traditional global classification loss, simultaneously considering part loss enforces the deep network to learn representations for different body parts and gain the discriminative power on unseen persons. Experimental results on three person ReID datasets, i.e., Market1501, CUHK03, and VIPeR, show that our representation outperforms existing deep representations.
关键词Person re-identification representation learning part lass networks convolutional neural networks
DOI10.1109/TIP.2019.2891888
收录类别SCI
语种英语
资助项目National Postdoctoral Programme for Innovative Talents ; National Nature Science Foundation of China[61525206] ; National Nature Science Foundation of China[61532009] ; National Nature Science Foundation of China[61721004] ; National Nature Science Foundation of China[U1705262] ; National Nature Science Foundation of China[61572050] ; National Nature Science Foundation of China[91538111] ; National Nature Science Foundation of China[61620106009] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-JSC039]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000462386000018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:296[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4140
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yao, Hantao
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
3.Univ Technol, Dept Comp Sci & Technol, Hefei 230009, Anhui, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Dept Artificial Intelligence, Beijing 100049, Peoples R China
6.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Yao, Hantao,Zhang, Shiliang,Hong, Richang,et al. Deep Representation Learning With Part Loss for Person Re-Identification[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2019,28(6):2860-2871.
APA Yao, Hantao,Zhang, Shiliang,Hong, Richang,Zhang, Yongdong,Xu, Changsheng,&Tian, Qi.(2019).Deep Representation Learning With Part Loss for Person Re-Identification.IEEE TRANSACTIONS ON IMAGE PROCESSING,28(6),2860-2871.
MLA Yao, Hantao,et al."Deep Representation Learning With Part Loss for Person Re-Identification".IEEE TRANSACTIONS ON IMAGE PROCESSING 28.6(2019):2860-2871.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Shiliang]的文章
[Hong, Richang]的文章
百度学术
百度学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Shiliang]的文章
[Hong, Richang]的文章
必应学术
必应学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Shiliang]的文章
[Hong, Richang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。