CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Mining concise patterns on graph-connected itemsets
Zhang, Di1; Zhang, Yunquan1,2; Niu, Qiang3; Qiu, Xingbao4
2019-04-07
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号336页码:27-35
摘要The itemset is a basic and usual form of data. People can obtain new insights into their business by discovering its implicit regularities through pattern mining. In some real applications, e.g., network alarm association, the itemsets usually have the following two characteristics: (1) the observed samples come from different entities, with inherent structural relationships implied in their static properties; (2) the samples are scarce, which may lead to incomplete pattern extraction. This paper considers how to efficiently find a concise set of patterns on such kind of data. Firstly, we use a graph to express the entities and their interconnections and propagate every sample to every node with a weight, determined by the pre-defined combination of kernel functions based on the similarities of the nodes and patterns. Next, the weight values can be naturally imported into the MDL-based filtering process and bring a differentiated pattern set for each node. Experiments show that the solution can outperform the global solution (trading all nodes as one) and isolated solution (removing all edges) on simulated and real data, and its effectiveness and scalability can be further verified in the application of large-scale network operation and maintenance. (C) 2018 Elsevier B.V. All rights reserved.
关键词Pattern mining MDL Graph Diffusion kernel Maximal entropy random walk
DOI10.1016/j.neucom.2018.03.084
收录类别SCI
语种英语
资助项目NSF of China[11301420] ; NSF of Jiangsu Province[BK20150373] ; NSF of Jiangsu Province[BK20171237] ; Suzhou Science and Technology Program[SZS201613] ; XJTLU Key Programme Special Fund (KSF)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000461358600004
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4126
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Di
作者单位1.Commun Univ China, Sch Comp Sci, Beijing 100024, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
3.Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou 215123, Peoples R China
4.China Mobile Commun Corp, Beijing 100032, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Di,Zhang, Yunquan,Niu, Qiang,et al. Mining concise patterns on graph-connected itemsets[J]. NEUROCOMPUTING,2019,336:27-35.
APA Zhang, Di,Zhang, Yunquan,Niu, Qiang,&Qiu, Xingbao.(2019).Mining concise patterns on graph-connected itemsets.NEUROCOMPUTING,336,27-35.
MLA Zhang, Di,et al."Mining concise patterns on graph-connected itemsets".NEUROCOMPUTING 336(2019):27-35.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Di]的文章
[Zhang, Yunquan]的文章
[Niu, Qiang]的文章
百度学术
百度学术中相似的文章
[Zhang, Di]的文章
[Zhang, Yunquan]的文章
[Niu, Qiang]的文章
必应学术
必应学术中相似的文章
[Zhang, Di]的文章
[Zhang, Yunquan]的文章
[Niu, Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。