CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Crime Type Identification Using High-Order Deep Residual Network with Multiple Attention Algorithm
Qiu, Dawei1,2,3; Liu, Chang1,2,3; Shang, Yuangfeng1,2,3; Zhao, Zixu1,2,3,4; Shi, Jinlin1,2,3
2024-12-31
发表期刊APPLIED ARTIFICIAL INTELLIGENCE
ISSN0883-9514
卷号38期号:1页码:31
摘要Crime type identification is crucial for improving public safety through more accurate prevention and efficient responses. However, practical applications often suffer from a significant lack of effective samples features, making it difficult to focus on the most informative aspects during identification. This study addresses these challenges by proposing a novel crime type identification method that leverages a deep neural network enhanced with multiple attention mechanisms. The approach includes a tailored data processing method involving target encoding to convert categorical data into numerical form, L2 normalizer to standardize data and ensure balanced feature contribution, and variance threshold feature selection to remove low-variance features. Additionally, a High-Order Deep Residual Network with Multiple Attention (HO-ResNet-MA) is developed, featuring an optimized Huta68 block (Huta-6(8)-MA ResBlock) with an enhanced Contextual Transformer (CoT) unit for local attention and a queue-and-exclusion layer for global attention. To validate the effectiveness of the proposed method, homicide reports data and Chicago crimes data are processed and fed into the crime type identification model, resulting in accuracies of over 84.1% and 99.5%, respectively. This study makes contributions to the field of crime analysis by validating the practical applicability of these approaches, and enhancing the efficiency of public safety workers.
DOI10.1080/08839514.2024.2428552
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2022YFC3320800]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001357714600001
出版者TAYLOR & FRANCIS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41185
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shang, Yuangfeng
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, 6 Kexueyuan Nanlu, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Qiu, Dawei,Liu, Chang,Shang, Yuangfeng,et al. Crime Type Identification Using High-Order Deep Residual Network with Multiple Attention Algorithm[J]. APPLIED ARTIFICIAL INTELLIGENCE,2024,38(1):31.
APA Qiu, Dawei,Liu, Chang,Shang, Yuangfeng,Zhao, Zixu,&Shi, Jinlin.(2024).Crime Type Identification Using High-Order Deep Residual Network with Multiple Attention Algorithm.APPLIED ARTIFICIAL INTELLIGENCE,38(1),31.
MLA Qiu, Dawei,et al."Crime Type Identification Using High-Order Deep Residual Network with Multiple Attention Algorithm".APPLIED ARTIFICIAL INTELLIGENCE 38.1(2024):31.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiu, Dawei]的文章
[Liu, Chang]的文章
[Shang, Yuangfeng]的文章
百度学术
百度学术中相似的文章
[Qiu, Dawei]的文章
[Liu, Chang]的文章
[Shang, Yuangfeng]的文章
必应学术
必应学术中相似的文章
[Qiu, Dawei]的文章
[Liu, Chang]的文章
[Shang, Yuangfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。