CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation
Wang, Qiyuan1,2; Zhao, Shang1,2; Xu, Zikang1,2; Zhou, S. Kevin1,2,3,4
2025
发表期刊MEDICAL IMAGE ANALYSIS
ISSN1361-8415
卷号99页码:15
摘要Surgical instrument segmentation is instrumental to minimally invasive surgeries and related applications. Most previous methods formulate this task as single-frame-based instance segmentation while ignoring the natural temporal and stereo attributes of a surgical video. Asa result, these methods are less robust against the appearance variation through temporal motion and view change. In this work, we propose a novel LACOSTE model that exploits L ocation-Agnostic CO ntexts in S tereo and TE mporal images for improved surgical instrument segmentation. Leveraging a query-based segmentation model as core, we design three performance-enhancing modules. Firstly, we design a disparity-guided feature propagation module to enhance depth-aware features explicitly. To generalize well for even only a monocular video, we apply a pseudo stereo scheme to generate complementary right images. Secondly, we propose a stereo-temporal set classifier, which aggregates stereo-temporal contexts in a universal way for making a consolidated prediction and mitigates transient failures. Finally, we propose a location-agnostic classifier to decouple the location bias from mask prediction and enhance the feature semantics. We extensively validate our approach on three public surgical video datasets, including two benchmarks from EndoVis Challenges and one real radical prostatectomy surgery dataset GraSP. Experimental results demonstrate the promising performances of our method, which consistently achieves comparable or favorable results with previous state-of-the-art approaches.
关键词Surgical data science Stereo-temporal modeling Set classifier Query-based segmentation Transformer
DOI10.1016/j.media.2024.103387
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[62271465] ; Suzhou Basic Research Program[SYG202338] ; Open Fund Project of Guangdong Academy of Medical Sciences, China[YKY-KF202206]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001360051900001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41177
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, S. Kevin
作者单位1.Univ Sci & Technol China, Sch Biomed Engn, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China
2.Univ Sci & Technol China, Suzhou Inst Adv Res, Ctr Med Imaging Robot Analyt Comp & Learning MIRAC, Suzhou 215123, Jiangsu, Peoples R China
3.Univ Sci & Technol China, Key Lab Precis & Intelligent Chem, Hefei 230026, Anhui, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, CAS, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qiyuan,Zhao, Shang,Xu, Zikang,et al. LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation[J]. MEDICAL IMAGE ANALYSIS,2025,99:15.
APA Wang, Qiyuan,Zhao, Shang,Xu, Zikang,&Zhou, S. Kevin.(2025).LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation.MEDICAL IMAGE ANALYSIS,99,15.
MLA Wang, Qiyuan,et al."LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation".MEDICAL IMAGE ANALYSIS 99(2025):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qiyuan]的文章
[Zhao, Shang]的文章
[Xu, Zikang]的文章
百度学术
百度学术中相似的文章
[Wang, Qiyuan]的文章
[Zhao, Shang]的文章
[Xu, Zikang]的文章
必应学术
必应学术中相似的文章
[Wang, Qiyuan]的文章
[Zhao, Shang]的文章
[Xu, Zikang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。