Institute of Computing Technology, Chinese Academy IR
LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation | |
Wang, Qiyuan1,2; Zhao, Shang1,2; Xu, Zikang1,2; Zhou, S. Kevin1,2,3,4 | |
2025 | |
发表期刊 | MEDICAL IMAGE ANALYSIS
![]() |
ISSN | 1361-8415 |
卷号 | 99页码:15 |
摘要 | Surgical instrument segmentation is instrumental to minimally invasive surgeries and related applications. Most previous methods formulate this task as single-frame-based instance segmentation while ignoring the natural temporal and stereo attributes of a surgical video. Asa result, these methods are less robust against the appearance variation through temporal motion and view change. In this work, we propose a novel LACOSTE model that exploits L ocation-Agnostic CO ntexts in S tereo and TE mporal images for improved surgical instrument segmentation. Leveraging a query-based segmentation model as core, we design three performance-enhancing modules. Firstly, we design a disparity-guided feature propagation module to enhance depth-aware features explicitly. To generalize well for even only a monocular video, we apply a pseudo stereo scheme to generate complementary right images. Secondly, we propose a stereo-temporal set classifier, which aggregates stereo-temporal contexts in a universal way for making a consolidated prediction and mitigates transient failures. Finally, we propose a location-agnostic classifier to decouple the location bias from mask prediction and enhance the feature semantics. We extensively validate our approach on three public surgical video datasets, including two benchmarks from EndoVis Challenges and one real radical prostatectomy surgery dataset GraSP. Experimental results demonstrate the promising performances of our method, which consistently achieves comparable or favorable results with previous state-of-the-art approaches. |
关键词 | Surgical data science Stereo-temporal modeling Set classifier Query-based segmentation Transformer |
DOI | 10.1016/j.media.2024.103387 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[62271465] ; Suzhou Basic Research Program[SYG202338] ; Open Fund Project of Guangdong Academy of Medical Sciences, China[YKY-KF202206] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001360051900001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/41177 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhou, S. Kevin |
作者单位 | 1.Univ Sci & Technol China, Sch Biomed Engn, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China 2.Univ Sci & Technol China, Suzhou Inst Adv Res, Ctr Med Imaging Robot Analyt Comp & Learning MIRAC, Suzhou 215123, Jiangsu, Peoples R China 3.Univ Sci & Technol China, Key Lab Precis & Intelligent Chem, Hefei 230026, Anhui, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, CAS, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Qiyuan,Zhao, Shang,Xu, Zikang,et al. LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation[J]. MEDICAL IMAGE ANALYSIS,2025,99:15. |
APA | Wang, Qiyuan,Zhao, Shang,Xu, Zikang,&Zhou, S. Kevin.(2025).LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation.MEDICAL IMAGE ANALYSIS,99,15. |
MLA | Wang, Qiyuan,et al."LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation".MEDICAL IMAGE ANALYSIS 99(2025):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论