CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Interrelated Dense Pattern Detection in Multilayer Networks
Feng, Wenjie1,2; Wang, Li3,4; Hooi, Bryan2; Ng, See Kiong2; Liu, Shenghua3,4
2024-11-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号36期号:11页码:6462-6476
摘要Given a heterogeneous multilayer network with various connections in pharmacology, how can we detect components with intensive interactions and strong dependencies? Can we accurately capture suspicious groups in a multi-lot transaction network under camouflage? These challenges related to dense subgraph detection have been extensively studied in simple graphs (such as bipartite graph, multi-view network) but remain under-explored on complex networks. Existing methods struggle to effectively handle the intricate dependencies, let alone accurately identify the interrelated dense connected patterns within a series of complex heterogeneous networks. In this paper, we propose InDuen, a novel algorithm designed to detect interrelated densest subgraphs in multilayer networks through joint optimization of coupled factorization and local search for an elaborate-designed joint density measure. It is (a) effective for both large synthetic and real networks, (b) resistant to camouflage for anomaly detection, and (c) linearly scalable. Experimental results demonstrate that InDuen outperforms the state-of-the-art baselines in accurately detecting interrelated densest subgraphs under various settings. Furthermore, InDuen uncovers some intriguing patterns in real-world data, i.e., closely cooperated academic groups and interrelated dependent functional components in biology-net. InDuen achieves more than 35x speedup compared to the SOTA method Destine.
关键词Nonhomogeneous media Matrix decomposition Diseases Cross layer design Image edge detection Task analysis Optimization Multilayer network dense subgraph detection interrelated pattern mining algorithm design
DOI10.1109/TKDE.2024.3398683
收录类别SCI
语种英语
资助项目National Science Foundation of China[U21B2046] ; National Science Foundation of China[6237075198] ; National Research Foundation Singapore ; DSO National Laboratories through AI Singapore Programme (AISG)[AISG2-RP-2020-018] ; National Key R&D Program of China[2023YFC3305303]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:001336378400129
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41169
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Feng, Wenjie; Liu, Shenghua
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Natl Univ Singapore, Inst Data Sci, Singapore 117602, Singapore
3.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab AI Secur, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Feng, Wenjie,Wang, Li,Hooi, Bryan,et al. Interrelated Dense Pattern Detection in Multilayer Networks[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2024,36(11):6462-6476.
APA Feng, Wenjie,Wang, Li,Hooi, Bryan,Ng, See Kiong,&Liu, Shenghua.(2024).Interrelated Dense Pattern Detection in Multilayer Networks.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,36(11),6462-6476.
MLA Feng, Wenjie,et al."Interrelated Dense Pattern Detection in Multilayer Networks".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 36.11(2024):6462-6476.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Wenjie]的文章
[Wang, Li]的文章
[Hooi, Bryan]的文章
百度学术
百度学术中相似的文章
[Feng, Wenjie]的文章
[Wang, Li]的文章
[Hooi, Bryan]的文章
必应学术
必应学术中相似的文章
[Feng, Wenjie]的文章
[Wang, Li]的文章
[Hooi, Bryan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。