CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DreamUDF: Generating Unsigned Distance Fields from A Single Image
Liu, Yu-tao1,2,3; Gao, Xuan1,2,3; Chen, Weikai4; Yang, Jie1; Meng, Xiaoxu4; Yang, Bo4; Gao, Lin1,2,3
2024-12-01
发表期刊ACM TRANSACTIONS ON GRAPHICS
ISSN0730-0301
卷号43期号:6页码:21
摘要Recent advances in diffusion models and neural implicit surfaces have shown promising progress in generating 3D models. However, existing generative frameworks are limited to closed surfaces, failing to cope with a wide range of commonly seen shapes that have open boundaries. In this work, we present DreamUDF, a novel framework for generating high-quality 3D objects with arbitrary topologies from a single image. To address the challenge of generating proper topology given sparse and ambiguous observations, we propose to incorporate both the data priors from a multi-view diffusion model and the geometry priors brought by an unsigned distance field (UDF) reconstructor. In particular, we leverage a joint framework that consists of 1) a generation module that produces a neural radiance field for photo realistic renderings from arbitrary views; and 2) a reconstruction module that distills the learnable radiance field into surfaces with arbitrary topologies. We further introduce a field coupler that bridges the radiance field and UDF under a novel optimization scheme. This allows the two modules to mutually boost each other during training. Extensive experiments and evaluations demonstrate that DreamUDF achieves high-quality reconstruction and robust 3D generation on both closed and open surfaces with arbitrary topologies, compared to the previous works.
关键词Unsigned distance field single-view 3D generation diffusion model neural radiance field
DOI10.1145/3687769
收录类别SCI
语种英语
资助项目National Natural Science Foundation China[62322210] ; National Natural Science Foundation China[62302484] ; Innovation Funding ICT, CAS[E461020] ; Beijing Municipal Natural Science Foundation for Distinguished Young Scholars[JQ21013] ; Beijing Munic-ipal Science and Technology Commission[Z231100005923031] ; China Postdoctoral Science Foundation[BX20230377] ; China Postdoctoral Science Foundation[2023M743568]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001367506000001
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41141
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
2.Sch Comp Sci & Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Tencent Games, DCC Algorithm Res Ctr, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yu-tao,Gao, Xuan,Chen, Weikai,et al. DreamUDF: Generating Unsigned Distance Fields from A Single Image[J]. ACM TRANSACTIONS ON GRAPHICS,2024,43(6):21.
APA Liu, Yu-tao.,Gao, Xuan.,Chen, Weikai.,Yang, Jie.,Meng, Xiaoxu.,...&Gao, Lin.(2024).DreamUDF: Generating Unsigned Distance Fields from A Single Image.ACM TRANSACTIONS ON GRAPHICS,43(6),21.
MLA Liu, Yu-tao,et al."DreamUDF: Generating Unsigned Distance Fields from A Single Image".ACM TRANSACTIONS ON GRAPHICS 43.6(2024):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yu-tao]的文章
[Gao, Xuan]的文章
[Chen, Weikai]的文章
百度学术
百度学术中相似的文章
[Liu, Yu-tao]的文章
[Gao, Xuan]的文章
[Chen, Weikai]的文章
必应学术
必应学术中相似的文章
[Liu, Yu-tao]的文章
[Gao, Xuan]的文章
[Chen, Weikai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。