CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey
Cheng, Long1; Gu, Yan1; Liu, Qingzhi2; Yang, Lei3; Liu, Cheng4; Wang, Ying4
2024-11-01
发表期刊IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING
ISSN2377-3782
卷号9期号:6页码:830-847
摘要The amalgamation of artificial intelligence with Internet of Things (AIoT) devices have seen a rapid surge in growth, largely due to the effective implementation of deep neural network (DNN) models across various domains. However, the deployment of DNNs on such devices comes with its own set of challenges, primarily related to computational capacity, storage, and energy efficiency. This survey offers an exhaustive review of techniques designed to accelerate DNN inference on AIoT devices, addressing these challenges head-on. We delve into critical model compression techniques designed to adapt to the limitations of devices and hardware optimization strategies that aim to boost efficiency. Furthermore, we examine parallelization methods that leverage parallel computing for swift inference, as well as novel optimization strategies that fine-tune the execution process. This survey also casts a future-forward glance at emerging trends, including advancements in mobile hardware, the co-design of software and hardware, privacy and security considerations, and DNN inference on AIoT devices with constrained resources. All in all, this survey aspires to serve as a holistic guide to advancements in the acceleration of DNN inference on AIoT devices, aiming to provide sustainable computing for upcoming IoT applications driven by artificial intelligence.
关键词Computational modeling Hardware Artificial neural networks Optimization Internet of Things Adaptation models Data models AIoT devices DNN inference model compression parallel computing performance optimization survey
DOI10.1109/TSUSC.2024.3353176
收录类别SCI
语种英语
资助项目Zhejiang Lab[2021PC0AC01] ; Fundamental Research Funds for the Central Universities[2023YQ002]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:001375683800012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41135
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ying
作者单位1.North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
2.Wageningen Univ & Res, Informat Technol Grp, NL-6708 Wageningen, Netherlands
3.George Mason Univ, Dept Informat Sci & Technol, Fairfax, VA 22030 USA
4.Chinese Acad Sci, State Key Lab Comp Architecture, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Long,Gu, Yan,Liu, Qingzhi,et al. Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey[J]. IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,2024,9(6):830-847.
APA Cheng, Long,Gu, Yan,Liu, Qingzhi,Yang, Lei,Liu, Cheng,&Wang, Ying.(2024).Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey.IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,9(6),830-847.
MLA Cheng, Long,et al."Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey".IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 9.6(2024):830-847.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheng, Long]的文章
[Gu, Yan]的文章
[Liu, Qingzhi]的文章
百度学术
百度学术中相似的文章
[Cheng, Long]的文章
[Gu, Yan]的文章
[Liu, Qingzhi]的文章
必应学术
必应学术中相似的文章
[Cheng, Long]的文章
[Gu, Yan]的文章
[Liu, Qingzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。