CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A survey on deep learning-based algorithms for the traveling salesman problem
Sui, Jingyan1,2; Ding, Shizhe1,2; Huang, Xulin1,4; Yu, Yue1,2,5; Liu, Ruizhi1,2; Xia, Boyang1,2; Ding, Zhenxin1,2; Xu, Liming1,2; Zhang, Haicang1,2; Yu, Chungong1,2; Bu, Dongbo1,2,3
2025-06-01
发表期刊FRONTIERS OF COMPUTER SCIENCE
ISSN2095-2228
卷号19期号:6页码:30
摘要This paper presents an overview of deep learning (DL)-based algorithms designed for solving the traveling salesman problem (TSP), categorizing them into four categories: end-to-end construction algorithms, end-to-end improvement algorithms, direct hybrid algorithms, and large language model (LLM)-based hybrid algorithms. We introduce the principles and methodologies of these algorithms, outlining their strengths and limitations through experimental comparisons. End-to-end construction algorithms employ neural networks to generate solutions from scratch, demonstrating rapid solving speed but often yielding subpar solutions. Conversely, end-to-end improvement algorithms iteratively refine initial solutions, achieving higher-quality outcomes but necessitating longer computation times. Direct hybrid algorithms directly integrate deep learning with heuristic algorithms, showcasing robust solving performance and generalization capability. LLM-based hybrid algorithms leverage LLMs to autonomously generate and refine heuristics, showing promising performance despite being in early developmental stages. In the future, further integration of deep learning techniques, particularly LLMs, with heuristic algorithms and advancements in interpretability and generalization will be pivotal trends in TSP algorithm design. These endeavors aim to tackle larger and more complex real-world instances while enhancing algorithm reliability and practicality. This paper offers insights into the evolving landscape of DL-based TSP solving algorithms and provides a perspective for future research directions.
关键词traveling salesman problem algorithms design deep learning neural network
DOI10.1007/s11704-024-40490-y
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2020YFA0907000] ; National Natural Science Foundation of China[32270657] ; National Natural Science Foundation of China[32271297] ; National Natural Science Foundation of China[82130055] ; National Natural Science Foundation of China[62072435] ; Youth Innovation Promotion Association, Chinese Academy of Sciences
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001376567700003
出版者HIGHER EDUCATION PRESS
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41131
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Bu, Dongbo
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processor, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Cent China Inst Artificial Intelligence, Zhengzhou 450046, Peoples R China
4.Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450002, Peoples R China
5.UCAS, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
推荐引用方式
GB/T 7714
Sui, Jingyan,Ding, Shizhe,Huang, Xulin,et al. A survey on deep learning-based algorithms for the traveling salesman problem[J]. FRONTIERS OF COMPUTER SCIENCE,2025,19(6):30.
APA Sui, Jingyan.,Ding, Shizhe.,Huang, Xulin.,Yu, Yue.,Liu, Ruizhi.,...&Bu, Dongbo.(2025).A survey on deep learning-based algorithms for the traveling salesman problem.FRONTIERS OF COMPUTER SCIENCE,19(6),30.
MLA Sui, Jingyan,et al."A survey on deep learning-based algorithms for the traveling salesman problem".FRONTIERS OF COMPUTER SCIENCE 19.6(2025):30.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sui, Jingyan]的文章
[Ding, Shizhe]的文章
[Huang, Xulin]的文章
百度学术
百度学术中相似的文章
[Sui, Jingyan]的文章
[Ding, Shizhe]的文章
[Huang, Xulin]的文章
必应学术
必应学术中相似的文章
[Sui, Jingyan]的文章
[Ding, Shizhe]的文章
[Huang, Xulin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。