CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
From Social to Individuals: A Parsimonious Path of Multi-Level Models for Crowdsourced Preference Aggregation
Xu, Qianqian1,2; Xiong, Jiechao3,4; Cao, Xiaochun2; Huang, Qingming5,6; Yao, Yuan7,8
2019-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号41期号:4页码:844-856
摘要In crowdsourced preference aggregation, it is often assumed that all the annotators are subject to a common preference or social utility function which generates their comparison behaviors in experiments. However, in reality, annotators are subject to variations due to multi-criteria, abnormal, or a mixture of such behaviors. In this paper, we propose a parsimonious mixed-effects model, which takes into account both the fixed effect that the majority of annotators follows a common linear utility model, and the random effect that some annotators might deviate from the common significantly and exhibit strongly personalized preferences. The key algorithm in this paper establishes a dynamic path from the social utility to individual variations, with different levels of sparsity on personalization. The algorithm is based on the Linearized Bregman Iterations, which leads to easy parallel implementations to meet the need of large-scale data analysis. In this unified framework, three kinds of random utility models are presented, including the basic linear model with L-2 loss, Bradley-Terry model, and Thurstone-Mosteller model. The validity of these multi-level models are supported by experiments with both simulated and real-world datasets, which shows that the parsimonious multi-level models exhibit improvements in both interpretability and predictive precision compared with traditional HodgeRank.
关键词Preference aggregation HodgeRank mixed-effects models linearized bregman iterations personalized ranking position bias
DOI10.1109/TPAMI.2018.2817205
收录类别SCI
语种英语
资助项目National Key Research and Development Plan[2016YFB0800403] ; National Natural Science Foundation of China[61672514] ; National Natural Science Foundation of China[61390514] ; National Natural Science Foundation of China[61572042] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61370004] ; National Natural Science Foundation of China[11421110001] ; Beijing Natural Science Foundation[4182079] ; Beijing Natural Science Foundation[4172068] ; Youth Innovation Promotion Association CAS ; CCF-Tencent Open Research Fund ; Key Program of the Chinese Academy of Sciences[QYZDB-SSW-JSC003] ; National Basic Research Program of China (973 Program)[2015CB351800] ; Key Research Program of Frontier Sciences[CAS: QYZDJ-SSW-SYS013] ; Hong Kong Research Grant Council (HKRGC)[16303817] ; National Basic Research Program of China[2015CB85600] ; National Basic Research Program of China[2012CB825501] ; Tencent AI Lab ; Si Family Foundation ; Baidu Big Data Institute ; Microsoft Research-Asia
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000460583500005
出版者IEEE COMPUTER SOC
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4112
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Xiaochun; Huang, Qingming; Yao, Yuan
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Informat Engn, SKLOIS, Beijing 100093, Peoples R China
3.Tencent AI Lab, Shenzhen 518057, Peoples R China
4.Peking Univ, BICMR LMAM LMEQF LMP, Sch Math Sci, Beijing 100871, Peoples R China
5.Univ Chinese Acad Sci, Huairou 101408, Peoples R China
6.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
7.Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
8.Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Xu, Qianqian,Xiong, Jiechao,Cao, Xiaochun,et al. From Social to Individuals: A Parsimonious Path of Multi-Level Models for Crowdsourced Preference Aggregation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2019,41(4):844-856.
APA Xu, Qianqian,Xiong, Jiechao,Cao, Xiaochun,Huang, Qingming,&Yao, Yuan.(2019).From Social to Individuals: A Parsimonious Path of Multi-Level Models for Crowdsourced Preference Aggregation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,41(4),844-856.
MLA Xu, Qianqian,et al."From Social to Individuals: A Parsimonious Path of Multi-Level Models for Crowdsourced Preference Aggregation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 41.4(2019):844-856.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Qianqian]的文章
[Xiong, Jiechao]的文章
[Cao, Xiaochun]的文章
百度学术
百度学术中相似的文章
[Xu, Qianqian]的文章
[Xiong, Jiechao]的文章
[Cao, Xiaochun]的文章
必应学术
必应学术中相似的文章
[Xu, Qianqian]的文章
[Xiong, Jiechao]的文章
[Cao, Xiaochun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。