Institute of Computing Technology, Chinese Academy IR
Uncertainty-Boosted Robust Video Activity Anticipation | |
Qi, Zhaobo1; Wang, Shuhui2,3; Zhang, Weigang1; Huang, Qingming2,3,4 | |
2024-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
![]() |
ISSN | 0162-8828 |
卷号 | 46期号:12页码:7775-7792 |
摘要 | Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision and autonomous driving. Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored. This reduces the model generalization ability and deep understanding on video content, leading to serious error accumulation and degraded performance. In this paper, we address the uncertainty learning problem and propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results. The uncertainty value is used to derive a temperature parameter in the softmax function to modulate the predicted target activity distribution. To guarantee the distribution adjustment, we construct a reasonable target activity label representation by incorporating the activity evolution from the temporal class correlation and the semantic relationship. Moreover, we quantify the uncertainty into relative values by comparing the uncertainty among sample pairs and their temporal-lengths. This relative strategy provides a more accessible way in uncertainty modeling than quantifying the absolute uncertainty values on the whole dataset. Experiments on multiple backbones and benchmarks show our framework achieves promising performance and better robustness/interpretability. |
关键词 | Video activity anticipation data uncertainty relative uncertainty learning robustness |
DOI | 10.1109/TPAMI.2024.3393730 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2023YFC2508704] ; National Natural Science Foundation of China[U21B2038] ; National Natural Science Foundation of China[62236008] ; National Natural Science Foundation of China[62306092] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001364431200021 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/41099 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Shuhui; Zhang, Weigang |
作者单位 | 1.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 3.Peng Cheng Lab, Shenzhen 518066, Peoples R China 4.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China |
推荐引用方式 GB/T 7714 | Qi, Zhaobo,Wang, Shuhui,Zhang, Weigang,et al. Uncertainty-Boosted Robust Video Activity Anticipation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,46(12):7775-7792. |
APA | Qi, Zhaobo,Wang, Shuhui,Zhang, Weigang,&Huang, Qingming.(2024).Uncertainty-Boosted Robust Video Activity Anticipation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,46(12),7775-7792. |
MLA | Qi, Zhaobo,et al."Uncertainty-Boosted Robust Video Activity Anticipation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 46.12(2024):7775-7792. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论