CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DPA-2: a large atomic model as a multi-task learner
Zhang, Duo1,2,3; Liu, Xinzijian1,2; Zhang, Xiangyu4,5; Zhang, Chengqian2,6; Cai, Chun1,2; Bi, Hangrui1,2; Du, Yiming4,5; Qin, Xuejian7,8,9; Peng, Anyang1; Huang, Jiameng2,10; Li, Bowen11; Shan, Yifan7,8,9; Zeng, Jinzhe12,13; Zhang, Yuzhi2; Liu, Siyuan2; Li, Yifan14; Chang, Junhan2,15; Wang, Xinyan2; Zhou, Shuo2,16; Liu, Jianchuan17; Luo, Xiaoshan18,19; Wang, Zhenyu19,20; Jiang, Wanrun1; Wu, Jing21; Yang, Yudi21; Yang, Jiyuan21; Yang, Manyi22; Gong, Fu-Qiang23; Zhang, Linshuang2; Shi, Mengchao2; Dai, Fu-Zhi1; York, Darrin M.12,13; Liu, Shi21,24; Zhu, Tong11,25,26; Zhong, Zhicheng7,8,9; Lv, Jian19; Cheng, Jun27,28; Jia, Weile4; Chen, Mohan1,6; Ke, Guolin2; Weinan, E.29,30; Zhang, Linfeng1,2; Wang, Han6,31
2024-12-19
发表期刊NPJ COMPUTATIONAL MATERIALS
卷号10期号:1页码:15
摘要The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applications. We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials systems using a multi-task approach, DPA-2 demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies. Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research.
DOI10.1038/s41524-024-01493-2
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2021YFA0718900] ; National Key R&D Program of China[2022YFA1403000] ; National Natural Science Foundation of China[12122401] ; National Natural Science Foundation of China[12074007] ; National Natural Science Foundation of China[12135002] ; National Key Research and Development Project of China[2022YFA1004302] ; National Institutes of Health[GM107485] ; National Science Foundation[2209718] ; Natural Science Foundation of Zhejiang Province[2022XHSJJ006] ; National Science Fund for Distinguished Young Scholars[22225302] ; National Science Fund for Distinguished Young Scholars[AI4EC] ; National Science Fund for Distinguished Young Scholars[RD2023100101] ; National Science Fund for Distinguished Young Scholars[RD2022070501]
WOS研究方向Chemistry ; Materials Science
WOS类目Chemistry, Physical ; Materials Science, Multidisciplinary
WOS记录号WOS:001381211200004
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41077
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Linfeng; Wang, Han
作者单位1.AI Sci Inst, Beijing, Peoples R China
2.DP Technol, Beijing, Peoples R China
3.Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing, Peoples R China
5.Univ Chinese Acad Sci, Beijing, Peoples R China
6.Peking Univ, Coll Engn, HEDPS, CAPT, Beijing, Peoples R China
7.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China
8.Chinese Acad Sci, CAS Key Lab Magnet Mat & Devices, Ningbo, Peoples R China
9.Chinese Acad Sci, Zhejiang Prov Key Lab Magnet Mat & Applicat Techno, Ningbo, Peoples R China
10.Peking Univ, Sch Elect Engn & Comp Sci, Beijing, Peoples R China
11.East China Normal Univ, Shanghai Engn Res Ctr Mol Therapeut & New Drug Dev, Sch Chem & Mol Engn, Shanghai, Peoples R China
12.Rutgers State Univ, Inst Quantitat Biomed, Lab Biomol Simulat Res, Piscataway, NJ USA
13.Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ USA
14.Princeton Univ, Dept Chem, Princeton, NJ USA
15.Peking Univ, Coll Chem & Mol Engn, Beijing, Peoples R China
16.Peking Univ, Yuanpei Coll, Beijing, Peoples R China
17.Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu, Peoples R China
18.Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun, Peoples R China
19.Jilin Univ, Coll Phys, Key Lab Mat Simulat Methods & Software, Minist Educ, Changchun, Peoples R China
20.Jilin Univ, Int Ctr Future Sci, Changchun, Peoples R China
21.Westlake Univ, Sch Sci, Dept Phys, Key Lab Quantum Mat Zhejiang Prov, Hangzhou, Peoples R China
22.Italian Inst Technol, Atomist Simulat, Genoa, Italy
23.Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surface, iChEM, Xiamen, Peoples R China
24.Westlake Inst Adv Study, Inst Nat Sci, Hangzhou, Peoples R China
25.NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai, Peoples R China
26.Inst Adv Algorithms Res, Shanghai, Peoples R China
27.IKKEM, Lab AI Electrochem AI4EC, Xiamen, Peoples R China
28.Xiamen Univ, Inst Artificial Intelligence, Xiamen, Peoples R China
29.Peking Univ, Ctr Machine Learning Res, Beijing, Peoples R China
30.Peking Univ, Sch Math Sci, Beijing, Peoples R China
31.Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Duo,Liu, Xinzijian,Zhang, Xiangyu,et al. DPA-2: a large atomic model as a multi-task learner[J]. NPJ COMPUTATIONAL MATERIALS,2024,10(1):15.
APA Zhang, Duo.,Liu, Xinzijian.,Zhang, Xiangyu.,Zhang, Chengqian.,Cai, Chun.,...&Wang, Han.(2024).DPA-2: a large atomic model as a multi-task learner.NPJ COMPUTATIONAL MATERIALS,10(1),15.
MLA Zhang, Duo,et al."DPA-2: a large atomic model as a multi-task learner".NPJ COMPUTATIONAL MATERIALS 10.1(2024):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Duo]的文章
[Liu, Xinzijian]的文章
[Zhang, Xiangyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Duo]的文章
[Liu, Xinzijian]的文章
[Zhang, Xiangyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Duo]的文章
[Liu, Xinzijian]的文章
[Zhang, Xiangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。