Institute of Computing Technology, Chinese Academy IR
Generalizable Remote Physiological Measurement via Semantic-Sheltered Alignment and Plausible Style Randomization | |
Wang, Jiyao1; Lu, Hao2; Han, Hu3,4; Chen, Yingcong2; He, Dengbo1; Wu, Kaishun2 | |
2025 | |
发表期刊 | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
![]() |
ISSN | 0018-9456 |
卷号 | 74页码:14 |
摘要 | Remote photoplethysmography (rPPG) is a noninvasive technique that measures blood volume changes in the skin using a camera and a light source. Achieving accurate measurements relies on the generalization of models across different individuals and environmental conditions. However, most domain generalization (DG) methods are designed for classification tasks rather than regression tasks, which is a suboptimal solution for the rPPG task. In this work, we propose a novel dual-stream generalization framework (DG-rPPG), which consists of semantic-sheltered alignment (SSA) and plausible attribute randomization (PAR). Specifically, SSA can extract and align domain-agnostic features from different datasets; while maximumly preserving semantic information. PAR can enrich the attribute-related feature of each instance based on the statistical information of all the different domains, ensuring that the augmented features maintain plausibility. The heart rate (HR) and HR variability estimation evaluation with cross-domain protocol across five public datasets illustrated that our proposal significantly (p-value <0.05) outperforms all baselines (e.g., compared to DOHA, DG-rPPG achieves 9.25% and 8.19% improvement on MAE when UBFC and BUAA are target domains). Meanwhile, based on the intra-dataset, computation cost, and out-of-distribution (OOD) assessment, DG-rPPG presents the leading performance in OOD generalization while maintaining relatively good performance in in-distribution estimation and reasonable computational costs. This provides a foundation for real-time monitoring deployments in real environments. The code is available at https://github.com/WJULYW/DG-rPPG. |
关键词 | Domain generalization (DG) heart rate (HR) estimation invariant risk minimization (IRM) plausible style generation remote photoplethysmography (rPPG) Domain generalization (DG) heart rate (HR) estimation invariant risk minimization (IRM) plausible style generation remote photoplethysmography (rPPG) |
DOI | 10.1109/TIM.2024.3497058 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of Guangdong Province of China[2024A1515010392] ; National Natural Science Foundation of China[52202425] ; National Natural Science Foundation of China[62176249] ; Guangzhou Municipal Science and Technology Project[2023A03J0011] |
WOS研究方向 | Engineering ; Instruments & Instrumentation |
WOS类目 | Engineering, Electrical & Electronic ; Instruments & Instrumentation |
WOS记录号 | WOS:001378163300010 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/41063 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | He, Dengbo |
作者单位 | 1.Hong Kong Univ Sci & Technol Guangzhou, Syst Hub, Guangzhou 511455, Peoples R China 2.Hong Kong Univ Sci & Technol Guangzhou, Informat Hub, Guangzhou 511455, Peoples R China 3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China 4.Peng Cheng Lab, Shenzhen 518066, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Jiyao,Lu, Hao,Han, Hu,et al. Generalizable Remote Physiological Measurement via Semantic-Sheltered Alignment and Plausible Style Randomization[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2025,74:14. |
APA | Wang, Jiyao,Lu, Hao,Han, Hu,Chen, Yingcong,He, Dengbo,&Wu, Kaishun.(2025).Generalizable Remote Physiological Measurement via Semantic-Sheltered Alignment and Plausible Style Randomization.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,74,14. |
MLA | Wang, Jiyao,et al."Generalizable Remote Physiological Measurement via Semantic-Sheltered Alignment and Plausible Style Randomization".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 74(2025):14. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论