CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis
Shao, Zezhi1,2; Wang, Fei1; Xu, Yongjun1; Wei, Wei3; Yu, Chengqing1,2; Zhang, Zhao1; Yao, Di1; Sun, Tao1; Jin, Guangyin4; Cao, Xin5; Cong, Gao6; Jensen, Christian S.7; Cheng, Xueqi1
2025
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号37期号:1页码:291-305
摘要Multivariate Time Series (MTS) analysis is crucial to understanding and managing complex systems, such as traffic and energy systems, and a variety of approaches to MTS forecasting have been proposed recently. However, we often observe inconsistent or seemingly contradictory performance findings across different studies. This hinders our understanding of the merits of different approaches and slows down progress. We address the need for means of assessing MTS forecasting proposals reliably and fairly, in turn enabling better exploitation of MTS as seen in different applications. Specifically, we first propose BasicTS+, a benchmark designed to enable fair, comprehensive, and reproducible comparison of MTS forecasting solutions. BasicTS+ establishes a unified training pipeline and reasonable settings, enabling an unbiased evaluation. Second, we identify the heterogeneity across different MTS as an important consideration and enable classification of MTS based on their temporal and spatial characteristics. Disregarding this heterogeneity is a prime reason for difficulties in selecting the most promising technical directions. Third, we apply BasicTS+ along with rich datasets to assess the capabilities of more than 30 MTS forecasting solutions. This provides readers with an overall picture of the cutting-edge research on MTS forecasting.
关键词Forecasting Time series analysis Benchmark testing Transformers Predictive models Data models Computer science Reliability Proposals Electricity Benchmarking multivariate time series spatial-temporal forecasting long-term time series forecasting
DOI10.1109/TKDE.2024.3484454
收录类别SCI
语种英语
资助项目NSFC[62372430] ; NSFC[62206266] ; NSFC[62476264] ; NSFC[62472405] ; Youth Innovation Promotion Association of CAS[2023112] ; Postdoctoral Fellowship Program of CPSF[GZC20241758]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:001375739100031
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41055
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei; Xu, Yongjun; Cheng, Xueqi
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
4.Tsinghua Univ, Beijing 100190, Peoples R China
5.Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2033, Australia
6.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
7.Aalborg Univ, Dept Comp Sci, DK-9220 Aalborg, Denmark
推荐引用方式
GB/T 7714
Shao, Zezhi,Wang, Fei,Xu, Yongjun,et al. Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2025,37(1):291-305.
APA Shao, Zezhi.,Wang, Fei.,Xu, Yongjun.,Wei, Wei.,Yu, Chengqing.,...&Cheng, Xueqi.(2025).Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,37(1),291-305.
MLA Shao, Zezhi,et al."Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 37.1(2025):291-305.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Zezhi]的文章
[Wang, Fei]的文章
[Xu, Yongjun]的文章
百度学术
百度学术中相似的文章
[Shao, Zezhi]的文章
[Wang, Fei]的文章
[Xu, Yongjun]的文章
必应学术
必应学术中相似的文章
[Shao, Zezhi]的文章
[Wang, Fei]的文章
[Xu, Yongjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。