CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
QR-DeepONet: resolve abnormal convergence issue in deep operator network
Zhao, Jie1; Xie, Biwei1,2; Li, Xingquan1,3
2024-12-01
发表期刊MACHINE LEARNING-SCIENCE AND TECHNOLOGY
卷号5期号:4页码:10
摘要Deep operator network (DeepONet) has been proven to be highly successful in operator learning tasks. Theoretical analysis indicates that the generation error of DeepONet should decrease as the basis dimension increases, thus providing a systematic way to reduce its generalization errors (GEs) by varying the network hyperparameters. However, in practice, we found that, depending on the problem being solved and the activation function used, the GEs fluctuate unpredictably, contrary to theoretical expectations. Upon analyzing the output matrix of the trunk net, we determined that this behavior stems from the learned basis functions being highly linearly dependent, which limits the expressivity of the vanilla DeepONet. To address these limitations, we propose QR decomposition enhanced DeepONet (QR-DeepONet), an enhanced version of DeepONet using QR decomposition. These modifications ensured that the learned basis functions were linearly independent and orthogonal to each other. The numerical results demonstrate that the GEs of QR-DeepONet follow theoretical predictions that decrease monotonically as the basis dimension increases and outperform vanilla DeepONet. Consequently, the proposed method successfully fills the gap between the theory and practice.
关键词operator learning QR decomposition machine learning neural network
DOI10.1088/2632-2153/ada0a5
收录类别SCI
语种英语
资助项目Major Key Project of PCL ; [PCL2023A03]
WOS研究方向Computer Science ; Science & Technology - Other Topics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Multidisciplinary Sciences
WOS记录号WOS:001388376700001
出版者IOP Publishing Ltd
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40803
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Jie
作者单位1.Pengcheng Lab, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Minnan Normal Univ, Sch Math & Stat, Zhangzhou, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Jie,Xie, Biwei,Li, Xingquan. QR-DeepONet: resolve abnormal convergence issue in deep operator network[J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY,2024,5(4):10.
APA Zhao, Jie,Xie, Biwei,&Li, Xingquan.(2024).QR-DeepONet: resolve abnormal convergence issue in deep operator network.MACHINE LEARNING-SCIENCE AND TECHNOLOGY,5(4),10.
MLA Zhao, Jie,et al."QR-DeepONet: resolve abnormal convergence issue in deep operator network".MACHINE LEARNING-SCIENCE AND TECHNOLOGY 5.4(2024):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Jie]的文章
[Xie, Biwei]的文章
[Li, Xingquan]的文章
百度学术
百度学术中相似的文章
[Zhao, Jie]的文章
[Xie, Biwei]的文章
[Li, Xingquan]的文章
必应学术
必应学术中相似的文章
[Zhao, Jie]的文章
[Xie, Biwei]的文章
[Li, Xingquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。