Institute of Computing Technology, Chinese Academy IR
Progress in estimating the state of health using transfer learning-based electrochemical impedance spectroscopy of lithium-ion batteries | |
Qi, Guangheng1,3; Du, Guangwen2; Wang, Kai1,3,4 | |
2025-01-14 | |
发表期刊 | IONICS
![]() |
ISSN | 0947-7047 |
页码 | 13 |
摘要 | With the widespread application of energy storage systems, health monitoring of lithium-ion batteries (LIBs) has become important. Transfer learning (TL) provides new ideas and methods for battery health management and life prediction in the field of battery life prediction. This article spotlights the application of TL in enhancing electrochemical impedance spectroscopy (EIS) for the state of health (SOH) estimation of LIBs. It delineates the pivotal role of TL in addressing data scarcity and domain discrepancies to refine prediction accuracy. The review synthesizes recent advancements in utilizing TL with EIS data, detailing the methodology from experimental data sourcing to feature extraction, accuracy metrics, and performance analysis. It concludes by forecasting potential research directions in leveraging TL for more precise health diagnostics of LIBs and life cycle prediction. |
关键词 | Transfer learning Lithium-ion batteries Electrochemical impedance spectroscopy Estimation of SOH |
DOI | 10.1007/s11581-025-06065-y |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Youth Innovation Technology Project of Higher School in Shandong Province[2022KJ139] ; Youth Innovation Technology Project of Higher School in Shandong Province |
WOS研究方向 | Chemistry ; Electrochemistry ; Physics |
WOS类目 | Chemistry, Physical ; Electrochemistry ; Physics, Condensed Matter |
WOS记录号 | WOS:001395729900001 |
出版者 | SPRINGER HEIDELBERG |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/40791 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Kai |
作者单位 | 1.Qingdao Univ, Weihai Innovat Res Inst, Coll Elect Engn, Qingdao, Peoples R China 2.Qingdao Junray Intelligent Instrument Co Ltd, Qingdao, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 4.Shandong Suoxiang Intelligent Technol Co Ltd, Weifang 261101, Peoples R China |
推荐引用方式 GB/T 7714 | Qi, Guangheng,Du, Guangwen,Wang, Kai. Progress in estimating the state of health using transfer learning-based electrochemical impedance spectroscopy of lithium-ion batteries[J]. IONICS,2025:13. |
APA | Qi, Guangheng,Du, Guangwen,&Wang, Kai.(2025).Progress in estimating the state of health using transfer learning-based electrochemical impedance spectroscopy of lithium-ion batteries.IONICS,13. |
MLA | Qi, Guangheng,et al."Progress in estimating the state of health using transfer learning-based electrochemical impedance spectroscopy of lithium-ion batteries".IONICS (2025):13. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论