CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments
Zhu, Longji1; Yang, Yunan1,2; Xu, Fei1; Lu, Xinyu3; Shuai, Mingrui4,5; An, Zhulin4; Chen, Xiaomeng2; Li, Hu1; Martin, Francis L.6,7; Vikesland, Peter J.8; Ren, Bin3; Tian, Zhong-Qun3; Zhu, Yong-Guan1,9; Cui, Li1
2025-01-08
发表期刊SCIENCE ADVANCES
ISSN2375-2548
卷号11期号:2页码:14
摘要Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria. Through optimizing OSDL algorithms and training strategies, Raman-OSDL achieves 93% accuracy for five target airborne pathogens, 84% accuracy for untrained air bacteria, and 36% reduction in false positive rates compared to conventional close-set algorithms. It offers a high detection sensitivity down to 1:1000. When applied to real air containing >4600 bacterial species, our method accurately identifies single or multiple pathogens simultaneously within an hour. This single-cell tool advances rapidly surveilling pathogens in complex environments to prevent infection transmission.
DOI10.1126/sciadv.adp7991
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[42021005] ; National Natural Science Foundation of China[32100083] ; National Key R&D Program of China[2022YFF0713100] ; National Natural Science Foundation of China[22176186] ; Chinese Academy of Sciences[ZDBS-LY- DQC027]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001392723500024
出版者AMER ASSOC ADVANCEMENT SCIENCE
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40789
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Yong-Guan; Cui, Li
作者单位1.Chinese Acad Sci, Key Lab Urban Environm & Hlth, Inst Urban Environm, Xiamen 361021, Peoples R China
2.Northeast Agr Univ, Coll Life Sci, Harbin 150030, Peoples R China
3.Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.Anhui Univ, Hefei 230601, Peoples R China
6.Biocel UK Ltd, Kingston Upon Hull HU10 6TS, England
7.Blackpool Teaching Hosp NHS Fdn Trust, Dept Cellular Pathol, Whinney Heys Rd, Blackpool FY3 8NR, England
8.Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA
9.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Longji,Yang, Yunan,Xu, Fei,et al. Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments[J]. SCIENCE ADVANCES,2025,11(2):14.
APA Zhu, Longji.,Yang, Yunan.,Xu, Fei.,Lu, Xinyu.,Shuai, Mingrui.,...&Cui, Li.(2025).Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments.SCIENCE ADVANCES,11(2),14.
MLA Zhu, Longji,et al."Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments".SCIENCE ADVANCES 11.2(2025):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Longji]的文章
[Yang, Yunan]的文章
[Xu, Fei]的文章
百度学术
百度学术中相似的文章
[Zhu, Longji]的文章
[Yang, Yunan]的文章
[Xu, Fei]的文章
必应学术
必应学术中相似的文章
[Zhu, Longji]的文章
[Yang, Yunan]的文章
[Xu, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。