CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A machine learning prediction model for Cardiac Amyloidosis using routine blood tests in patients with left ventricular hypertrophy
Pan, Yuling1,2; Fan, Qingkun3; Liang, Yu1,2; Liu, Yunfan5; You, Haihang4; Liang, Chunzi1,2
2024-11-19
发表期刊SCIENTIFIC REPORTS
ISSN2045-2322
卷号14期号:1页码:11
摘要Current approaches for cardiac amyloidosis (CA) identification are time-consuming, labor-intensive, and present challenges in sensitivity and accuracy, leading to limited treatment efficacy and poor prognosis for patients. In this retrospective study, we aimed to leverage machine learning (ML) to create a diagnostic model for CA using data from routine blood tests. Our dataset included 6,563 patients with left ventricular hypertrophy, 261 of whom had been diagnosed with CA. We divided the dataset into training and testing cohorts, applying ML algorithms such as logistic regression, random forest, and XGBoost for automated learning and prediction. Our model's diagnostic accuracy was then evaluated against CA biomarkers, specifically serum-free light chains (FLCs). The model's interpretability was elucidated by visualizing the feature importance through the gain map. XGBoost outperformed both random forest and logistic regression in internal validation on the testing cohort, achieving an area under the curve (AUC) of 0.95 (95%CI: 0.92-0.97), sensitivity of 0.92 (95%CI: 0.86-0.98), specificity of 0.95 (95%CI: 0.94-0.97), and an F1 score of 0.89 (95%CI: 0.85-0.92). Its performance was also superior to the serum FLC-kappa and FLC-lambda combination (AUC of 0.88). Furthermore, XGBoost identified unique biomarker signatures indicative of multisystem dysfunction in CA patients, with significant changes in eGFR, FT3, cTnI, ANC, and NT-proBNP. This study develops a highly sensitive and accurate ML model for CA detection using routine clinical laboratory data, effectively streamlining diagnostic procedures, and providing valuable clinical insights and guiding future research into disease mechanisms.
关键词Cardiac amyloidosis Machine learning Routine blood tests Multi-system dysfunction profile Prediction model
DOI10.1038/s41598-024-77466-8
收录类别SCI
语种英语
资助项目High-level Talent Research Startup Funding of Hubei University of Chinese Medicine[100501070302] ; Wuhan Clinical Medical Research Center for Cardiovascular Imaging Internal Fund[CMRC202304]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001360400200011
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40771
专题中国科学院计算技术研究所期刊论文_英文
通讯作者You, Haihang; Liang, Chunzi
作者单位1.Hubei Univ Chinese Med, Sch Lab Med, 16 Huangjia Lake West Rd, Wuhan 430065, Peoples R China
2.Hubei Univ Chinese Med, Hubei Shizhen Lab, 16 Huangjia Lake West Rd, Wuhan 430065, Peoples R China
3.Wuhan Asia Heart Hosp, Dept Med Lab, Wuhan 430022, Hubei, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.Univ Toronto, 63 St George St, Toronto, ON M5S 2Z9, Canada
推荐引用方式
GB/T 7714
Pan, Yuling,Fan, Qingkun,Liang, Yu,et al. A machine learning prediction model for Cardiac Amyloidosis using routine blood tests in patients with left ventricular hypertrophy[J]. SCIENTIFIC REPORTS,2024,14(1):11.
APA Pan, Yuling,Fan, Qingkun,Liang, Yu,Liu, Yunfan,You, Haihang,&Liang, Chunzi.(2024).A machine learning prediction model for Cardiac Amyloidosis using routine blood tests in patients with left ventricular hypertrophy.SCIENTIFIC REPORTS,14(1),11.
MLA Pan, Yuling,et al."A machine learning prediction model for Cardiac Amyloidosis using routine blood tests in patients with left ventricular hypertrophy".SCIENTIFIC REPORTS 14.1(2024):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Yuling]的文章
[Fan, Qingkun]的文章
[Liang, Yu]的文章
百度学术
百度学术中相似的文章
[Pan, Yuling]的文章
[Fan, Qingkun]的文章
[Liang, Yu]的文章
必应学术
必应学术中相似的文章
[Pan, Yuling]的文章
[Fan, Qingkun]的文章
[Liang, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。