CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Modality-Consistent Prompt Tuning With Optimal Transport
Ren, Hairui1; Tang, Fan2; Zheng, Huangjie3; Zhao, He4; Guo, Dandan1; Chang, Yi5,6
2025-03-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号35期号:3页码:2499-2512
摘要Prompt tuning has been successfully used in leveraging the knowledge of Large-scale Vision-Language Pre-trained (VLP) models on downstream tasks. Most existing prompt tuning approaches learn prompts by maximizing the pairwise similarity. Although samples in different modalities might be relatively aligned pairwisely, such alignment does not fully utilize the information between samples, which can be less consistent on the modality level. In this paper, we propose a novel prompt tuning strategy by distributionally matching different modalities. Specifically, we minimize the distribution-wise distance between the image and text modalities with optimal transport (OT) theory. Simultaneously, we add a constraint on the learned transport plan during the modality matching to enhance the learning of vision and text prompts. Our proposed one can be applied to improve existing uni-modal and multi-modal prompt learning methods for being a plug-and-play method, which can generate modality-consistent representations. Experiments on eleven public datasets demonstrate that our proposed method has excellent performance, achieving substantial improvements on both uni-modal and multi-modal prompt tuning methods.
关键词Prompt tuning modality-consistent optimal transport distribution matching Prompt tuning modality-consistent optimal transport distribution matching
DOI10.1109/TCSVT.2024.3489024
收录类别SCI
语种英语
资助项目NSFC[62306125] ; NSFC[2023YFF0905400] ; NSFC[U2341229]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001439628600039
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40719
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Dandan; Chang, Yi
作者单位1.Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Jilin, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
4.CSIROs Data61, Eveleigh, NSW 2015, Australia
5.Jilin Univ, Sch Artificial Intelligence, Int Ctr Future Sci, Changchun 130012, Jilin, Peoples R China
6.Minist Educ MOE, Engn Res Ctr Knowledge Driven Human Machine Intell, Changchun 130000, Peoples R China
推荐引用方式
GB/T 7714
Ren, Hairui,Tang, Fan,Zheng, Huangjie,et al. Modality-Consistent Prompt Tuning With Optimal Transport[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2025,35(3):2499-2512.
APA Ren, Hairui,Tang, Fan,Zheng, Huangjie,Zhao, He,Guo, Dandan,&Chang, Yi.(2025).Modality-Consistent Prompt Tuning With Optimal Transport.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,35(3),2499-2512.
MLA Ren, Hairui,et al."Modality-Consistent Prompt Tuning With Optimal Transport".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 35.3(2025):2499-2512.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Hairui]的文章
[Tang, Fan]的文章
[Zheng, Huangjie]的文章
百度学术
百度学术中相似的文章
[Ren, Hairui]的文章
[Tang, Fan]的文章
[Zheng, Huangjie]的文章
必应学术
必应学术中相似的文章
[Ren, Hairui]的文章
[Tang, Fan]的文章
[Zheng, Huangjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。