CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Towards High-Quality and Disentangled Face Editing in a 3D GAN
Jiang, Kaiwen1,2; Chen, Shu-Yu1; Liu, Feng-Lin1,3; Fu, Hongbo4; Gao, Lin1,3
2025-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号47期号:4页码:2533-2544
摘要Recent methods for synthesizing 3D-aware face images have achieved rapid development thanks to neural radiance fields, allowing for high quality and fast inference speed. However, existing solutions for editing facial geometry and appearance independently usually require retraining and are not optimized for the recent work of generation, thus tending to lag behind the generation process. To address these issues, we introduce NeRFFaceEditing, which enables editing and decoupling geometry and appearance in the pretrained tri-plane-based neural radiance field while retaining its high quality and fast inference speed. Our key idea for disentanglement is to use the statistics of the tri-plane to represent the high-level appearance of its corresponding facial volume. Moreover, we leverage a generated 3D-continuous semantic mask as an intermediary for geometry editing. We devise a geometry decoder (whose output is unchanged when the appearance changes) and an appearance decoder. The geometry decoder aligns the original facial volume with the semantic mask volume. We also enhance the disentanglement by explicitly regularizing rendered images with the same appearance but different geometry to be similar in terms of color distribution for each facial component separately. Our method allows users to edit via semantic masks with decoupled control of geometry and appearance. Both qualitative and quantitative evaluations show the superior geometry and appearance control abilities of our method compared to existing and alternative solutions.
关键词Geometry Decoding Semantics Image color analysis Three-dimensional displays Faces Training Neural radiance field Codes Rendering (computer graphics) Face editing neural radiance fields neural rendering semantic-mask-based interfaces volume disentangling
DOI10.1109/TPAMI.2024.3523422
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62322210] ; Innovation Funding of ICT, CAS[E461020] ; Beijing Municipal Natural Science Foundation for Distinguished Young Scholars[JQ21013] ; Beijing Municipal Science and Technology Commission[Z231100005923031]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001439648900028
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40717
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100045, Peoples R China
2.Univ Calif San Diego, La Jolla, CA 92092 USA
3.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
4.Hong Kong Univ Sci & Technol, Div Arts & Machine Creat, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Kaiwen,Chen, Shu-Yu,Liu, Feng-Lin,et al. Towards High-Quality and Disentangled Face Editing in a 3D GAN[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2025,47(4):2533-2544.
APA Jiang, Kaiwen,Chen, Shu-Yu,Liu, Feng-Lin,Fu, Hongbo,&Gao, Lin.(2025).Towards High-Quality and Disentangled Face Editing in a 3D GAN.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,47(4),2533-2544.
MLA Jiang, Kaiwen,et al."Towards High-Quality and Disentangled Face Editing in a 3D GAN".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 47.4(2025):2533-2544.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Kaiwen]的文章
[Chen, Shu-Yu]的文章
[Liu, Feng-Lin]的文章
百度学术
百度学术中相似的文章
[Jiang, Kaiwen]的文章
[Chen, Shu-Yu]的文章
[Liu, Feng-Lin]的文章
必应学术
必应学术中相似的文章
[Jiang, Kaiwen]的文章
[Chen, Shu-Yu]的文章
[Liu, Feng-Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。