CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Attention-Enabled Multi-layer Subword Joint Learning for Chinese Word Embedding
Xue, Pengpeng1; Xiong, Jing2; Tan, Liang1,3; Liu, Zhongzhu4; Liu, Kanglong5
2025-04-01
发表期刊COGNITIVE COMPUTATION
ISSN1866-9956
卷号17期号:2页码:16
摘要In recent years, Chinese word embeddings have attracted significant attention in the field of natural language processing (NLP). The complex structures and diverse influences of Chinese characters present distinct challenges for semantic representation. As a result, Chinese word embeddings are primarily investigated in conjunction with characters and their subcomponents. Previous research has demonstrated that word vectors frequently fail to capture the subtle semantics embedded within the complex structure of Chinese characters. Furthermore, they often neglect the varying contributions of subword information to semantics at different levels. To tackle these challenges, we present a weight-based word vector model that takes into account the internal structure of Chinese words at various levels. The model further categorizes the internal structure of Chinese words into six layers of subword information: words, characters, components, pinyin, strokes, and structures. The semantics of Chinese words can be derived by integrating the subword information from various layers. Moreover, the model considers the varying contributions of each subword layer to the semantics of Chinese words. It utilizes an attention mechanism to determine the weights between and within the subword layers, facilitating the comprehensive extraction of word semantics. The word-level subwords act as the attention mechanism query for subwords in other layers to learn semantic bias. Experimental results show that the proposed word vector model achieves enhancements in various evaluation metrics, such as word similarity, word analogy, text categorization, and case studies.
关键词Chinese word embedding Semantic analysis Attention mechanism Feature substring Morphological information Pronunciation information
DOI10.1007/s12559-025-10431-3
收录类别SCI
语种英语
资助项目Sichuan Provincial Science and Technology Department Project[2022YFG0161] ; Sichuan Provincial Science and Technology Department Project[2023YFG0295] ; National Natural Science Foundation of China[61373126]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:001435384700001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40709
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tan, Liang
作者单位1.Sichuan Normal Univ, Sch Comp Sci, Chengdu 610101, Sichuan, Peoples R China
2.Chongqing Coll Mobile Commun, Chongqing Key Lab Publ Big Data Secur Technol, Chongqing 401420, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Huizhou Univ, Sch Math & Stat, Huizhou 516007, Guangdong, Peoples R China
5.Hong Kong Polytech Univ, Dept Chinese & Bilingual Studies, Hong Kong 999077, Peoples R China
推荐引用方式
GB/T 7714
Xue, Pengpeng,Xiong, Jing,Tan, Liang,et al. Attention-Enabled Multi-layer Subword Joint Learning for Chinese Word Embedding[J]. COGNITIVE COMPUTATION,2025,17(2):16.
APA Xue, Pengpeng,Xiong, Jing,Tan, Liang,Liu, Zhongzhu,&Liu, Kanglong.(2025).Attention-Enabled Multi-layer Subword Joint Learning for Chinese Word Embedding.COGNITIVE COMPUTATION,17(2),16.
MLA Xue, Pengpeng,et al."Attention-Enabled Multi-layer Subword Joint Learning for Chinese Word Embedding".COGNITIVE COMPUTATION 17.2(2025):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xue, Pengpeng]的文章
[Xiong, Jing]的文章
[Tan, Liang]的文章
百度学术
百度学术中相似的文章
[Xue, Pengpeng]的文章
[Xiong, Jing]的文章
[Tan, Liang]的文章
必应学术
必应学术中相似的文章
[Xue, Pengpeng]的文章
[Xiong, Jing]的文章
[Tan, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。