CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LighTN: Light-Weight Transformer Network for Performance-Overhead Tradeoff in Point Cloud Downsampling
Wang, Xu1,2; Jin, Yi1,2; Cen, Yigang1,2; Wang, Tao1,2; Tang, Bowen3; Li, Yidong1,2
2025
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号27页码:832-847
摘要Downsampling is a crucial task for processing large scale and/or dense point clouds with limited resources. Owing to the development of deep learning, approaches of task-oriented point cloud downsampling have significant performance gains in preserving geometric information. However, most downsamling methods are limited by the disordered and unstructured point cloud data, making it difficult to continually improve the performance. To address this issue, we propose a light-weight Transformer network (LighTN) for the task-oriented point cloud downsampling as an end-to-end solution. In LighTN, we design an energy-efficient and permutation invariant single-head self-correlation module to extract refined global geometric features. Moreover, we present a novel sampling loss function to guide LighTN to focus on critical point cloud regions with more uniform distributions and prominent point coverage. Extensive experiments on classification, registration, and reconstruction tasks demonstrate that LighTN can achieve the state-of-the-art performance-overhead tradeoff and high-quality qualitative results.
关键词Task analysis Point cloud compression Transformers Feature extraction Voltage transformers Three-dimensional displays Deep learning Point cloud deep learning downsampling transformer energy-efficient
DOI10.1109/TMM.2023.3318073
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61972030] ; National Key Research and Development Program of China[2022YFB3103505] ; State Scholarship Fund from the China Scholarship Council
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:001428064500037
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40703
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jin, Yi; Cen, Yigang
作者单位1.Beijing Jiaotong Univ, KeyLaboratory Big Data & Artificial Intelligence T, Minist Educ, Beijing 100044, Peoples R China
2.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Comp Architecture, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Xu,Jin, Yi,Cen, Yigang,et al. LighTN: Light-Weight Transformer Network for Performance-Overhead Tradeoff in Point Cloud Downsampling[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2025,27:832-847.
APA Wang, Xu,Jin, Yi,Cen, Yigang,Wang, Tao,Tang, Bowen,&Li, Yidong.(2025).LighTN: Light-Weight Transformer Network for Performance-Overhead Tradeoff in Point Cloud Downsampling.IEEE TRANSACTIONS ON MULTIMEDIA,27,832-847.
MLA Wang, Xu,et al."LighTN: Light-Weight Transformer Network for Performance-Overhead Tradeoff in Point Cloud Downsampling".IEEE TRANSACTIONS ON MULTIMEDIA 27(2025):832-847.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xu]的文章
[Jin, Yi]的文章
[Cen, Yigang]的文章
百度学术
百度学术中相似的文章
[Wang, Xu]的文章
[Jin, Yi]的文章
[Cen, Yigang]的文章
必应学术
必应学术中相似的文章
[Wang, Xu]的文章
[Jin, Yi]的文章
[Cen, Yigang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。