CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multichannel SAR-GMTI Algorithm Based on Adaptive Data Reconstruction and Improved RPCA
Liu, Kun1; He, Xiongpeng1; Liao, Guisheng1; Zhu, Shengqi1; Tan, Haining2; Qiu, Jibing2
2025
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号63页码:16
摘要In recent years, the low-rank matrix recovery theory has acquired widespread application in the radar system. For multichannel synthetic aperture radar systems, the robust principal component analysis (RPCA) has proven to be a valuable technique for effectively distinguishing moving targets from static background clutter within the image domain. However, in nonideal environments, the RPCA is susceptible to channel errors and strong clutter, resulting in degraded target detection performance. To resolve this issue, a slow ground-moving target indication (GMTI) processing algorithm is proposed in this article. First, the sample selection and data reconstruction (DR) are used to further compensate for channel imbalance error and registration error. Next, an RPCA optimization framework is proposed to mitigate the issue of elevated false alarm rates caused by heterogeneous environments, and the sparse matrix is obtained through the application of the alternating direction method of multipliers (ADMM). The proposed optimization model not only avoids excessive punishment of large singular values by kernel norm weighting but also further improves the performance of target detection by introducing a difference matrix and a Fourier matrix. Finally, the estimation of the target's radial velocity is accomplished through the utilization of the adaptive match filtering (AMF) algorithm. Compared with the traditional RPCA algorithm, the proposed algorithm significantly reduces the false alarm rate under the background of strong clutter. Theoretical analyses and measured data results verify the effectiveness of the proposed algorithm.
关键词Adaptive match filtering (AMF) data recon- struction (DR) ground-moving target indication (GMTI) robust principal component analysis (RPCA) robust principal component analysis (RPCA) robust principal component analysis (RPCA)
DOI10.1109/TGRS.2025.3540100
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62201408] ; National Natural Science Foundation of China (NSFC)[61931016] ; National Natural Science Foundation of China (NSFC)[61621005] ; National Natural Science Foundation of China (NSFC)[62431021]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001434801400025
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40697
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Xiongpeng; Liao, Guisheng
作者单位1.Xidian Univ, Natl Key Lab Radar Signal Proc, Xian 710071, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Res Ctr Intelligent Comp Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Kun,He, Xiongpeng,Liao, Guisheng,et al. Multichannel SAR-GMTI Algorithm Based on Adaptive Data Reconstruction and Improved RPCA[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2025,63:16.
APA Liu, Kun,He, Xiongpeng,Liao, Guisheng,Zhu, Shengqi,Tan, Haining,&Qiu, Jibing.(2025).Multichannel SAR-GMTI Algorithm Based on Adaptive Data Reconstruction and Improved RPCA.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,63,16.
MLA Liu, Kun,et al."Multichannel SAR-GMTI Algorithm Based on Adaptive Data Reconstruction and Improved RPCA".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 63(2025):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Kun]的文章
[He, Xiongpeng]的文章
[Liao, Guisheng]的文章
百度学术
百度学术中相似的文章
[Liu, Kun]的文章
[He, Xiongpeng]的文章
[Liao, Guisheng]的文章
必应学术
必应学术中相似的文章
[Liu, Kun]的文章
[He, Xiongpeng]的文章
[Liao, Guisheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。