CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
AI Computing Systems for Large Language Models Training
Zhang, Zhen-Xing1,2; Wen, Yuan-Bo2; Lyu, Han-Qi1,2,3; Liu, Chang3; Zhang, Rui2; Li, Xia-Qing2; Wang, Chao1; Du, Zi-Dong2,4; Guo, Qi2; Li, Ling5; Zhou, Xue-Hai1; Chen, Yun-Ji2,6
2025
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号40期号:1页码:6-41
摘要In this paper, we present a comprehensive overview of artificial intelligence (AI) computing systems for large language models (LLMs) training. The rapid advancement of LLMs in recent years, coupled with the widespread adoption of algorithms and applications such as BERT, ChatGPT, and DeepSeek, has sparked significant interest in this field. We classify LLMs into encoder-only, encoder-decoder, and decoder-only models, and briefly analyze their training and inference processes to emphasize their substantial need for computational resources. These operations depend heavily on AI-specific accelerators like GPUs (graphics processing units), TPUs (tensor processing units), and MLUs (machine learning units). However, as the gap widens between the increasing complexity of LLMs and the current capabilities of accelerators, it becomes essential to adopt heterogeneous computing systems optimized for distributed environments to manage the growing computational and memory requirements of LLMs. We delve into the execution and scheduling of LLM algorithms, underlining the critical role of distributed computing strategies, memory management enhancements, and boosting computational efficiency. This paper clarifies the complex relationship between algorithm design, hardware infrastructure, and software optimization, and provides an in-depth understanding of both the software and hardware infrastructure supporting LLMs training, offering insights into the challenges and potential avenues for future development and deployment.
关键词artificial intelligence (AI) chip large language model (LLM) AI computing system accelerator
DOI10.1007/s11390-024-4178-1
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61925208] ; National Natural Science Foundation of China[U22A2028] ; National Natural Science Foundation of China[62302483] ; National Natural Science Foundation of China[62222214] ; National Natural Science Foundation of China[62341411] ; National Natural Science Foundation of China[62102399] ; National Natural Science Foundation of China[62372436] ; Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research[YSBR-029] ; Youth Innovation Promotion Association of CAS, and Xplore Prize ; Xplore Prize
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001443496200005
出版者SPRINGER SINGAPORE PTE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40679
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yun-Ji
作者单位1.Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
3.Cambricon Technol, Beijing 100191, Peoples R China
4.Shanghai Innovat Ctr Processor Technol, Shanghai 201210, Peoples R China
5.Chinese Acad Sci, Inst Software, Intelligent Software Res Ctr, Beijing 100190, Peoples R China
6.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhen-Xing,Wen, Yuan-Bo,Lyu, Han-Qi,et al. AI Computing Systems for Large Language Models Training[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2025,40(1):6-41.
APA Zhang, Zhen-Xing.,Wen, Yuan-Bo.,Lyu, Han-Qi.,Liu, Chang.,Zhang, Rui.,...&Chen, Yun-Ji.(2025).AI Computing Systems for Large Language Models Training.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,40(1),6-41.
MLA Zhang, Zhen-Xing,et al."AI Computing Systems for Large Language Models Training".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 40.1(2025):6-41.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhen-Xing]的文章
[Wen, Yuan-Bo]的文章
[Lyu, Han-Qi]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhen-Xing]的文章
[Wen, Yuan-Bo]的文章
[Lyu, Han-Qi]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhen-Xing]的文章
[Wen, Yuan-Bo]的文章
[Lyu, Han-Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。