CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies
Shi, Songze1; Li, Fan2; Li, Wei3
2025-03-31
发表期刊MATHEMATICS
卷号13期号:7页码:13
摘要Stock return prediction is a pivotal yet intricate task in financial markets, challenged by volatility and multifaceted dependencies. This study proposes a hybrid model integrating long short-term memory (LSTM) networks and graph convolutional networks (GCNs) to enhance accuracy by capturing both temporal dynamics and spatial inter-stock relationships. Tested on the Dow Jones Industrial Average (DJIA), Shanghai Stock Exchange 50 (SSE50), and China Securities Index 100 (CSI 100), our LSTM-GCN model outperforms baselines-LSTM, GCN, RNN, GRU, BP, decision tree, and SVM-achieving the lowest mean squared error (e.g., 0.0055 on DJIA), mean absolute error, and highest R2 values. This superior performance stems from the synergistic interaction of spatio-temporal features, offering a robust tool for investors and policymakers. Future enhancements could incorporate sentiment analysis and dynamic graph structures.
关键词LSTM GCN machine learning temporal information spatial information stock return prediction
DOI10.3390/math13071142
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:001463959700001
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40671
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Wei
作者单位1.Univ Macau, Fac Business Adm, Macau, Peoples R China
2.Hong Kong Polytech Univ, Fac Business, Hong Kong, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Shi, Songze,Li, Fan,Li, Wei. A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies[J]. MATHEMATICS,2025,13(7):13.
APA Shi, Songze,Li, Fan,&Li, Wei.(2025).A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies.MATHEMATICS,13(7),13.
MLA Shi, Songze,et al."A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies".MATHEMATICS 13.7(2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, Songze]的文章
[Li, Fan]的文章
[Li, Wei]的文章
百度学术
百度学术中相似的文章
[Shi, Songze]的文章
[Li, Fan]的文章
[Li, Wei]的文章
必应学术
必应学术中相似的文章
[Shi, Songze]的文章
[Li, Fan]的文章
[Li, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。