Institute of Computing Technology, Chinese Academy IR
| A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies | |
| Shi, Songze1; Li, Fan2; Li, Wei3 | |
| 2025-03-31 | |
| 发表期刊 | MATHEMATICS
![]() |
| 卷号 | 13期号:7页码:13 |
| 摘要 | Stock return prediction is a pivotal yet intricate task in financial markets, challenged by volatility and multifaceted dependencies. This study proposes a hybrid model integrating long short-term memory (LSTM) networks and graph convolutional networks (GCNs) to enhance accuracy by capturing both temporal dynamics and spatial inter-stock relationships. Tested on the Dow Jones Industrial Average (DJIA), Shanghai Stock Exchange 50 (SSE50), and China Securities Index 100 (CSI 100), our LSTM-GCN model outperforms baselines-LSTM, GCN, RNN, GRU, BP, decision tree, and SVM-achieving the lowest mean squared error (e.g., 0.0055 on DJIA), mean absolute error, and highest R2 values. This superior performance stems from the synergistic interaction of spatio-temporal features, offering a robust tool for investors and policymakers. Future enhancements could incorporate sentiment analysis and dynamic graph structures. |
| 关键词 | LSTM GCN machine learning temporal information spatial information stock return prediction |
| DOI | 10.3390/math13071142 |
| 收录类别 | SCI |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics |
| WOS记录号 | WOS:001463959700001 |
| 出版者 | MDPI |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/40671 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Li, Wei |
| 作者单位 | 1.Univ Macau, Fac Business Adm, Macau, Peoples R China 2.Hong Kong Polytech Univ, Fac Business, Hong Kong, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Shi, Songze,Li, Fan,Li, Wei. A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies[J]. MATHEMATICS,2025,13(7):13. |
| APA | Shi, Songze,Li, Fan,&Li, Wei.(2025).A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies.MATHEMATICS,13(7),13. |
| MLA | Shi, Songze,et al."A Hybrid Long Short-Term Memory-Graph Convolutional Network Model for Enhanced Stock Return Prediction: Integrating Temporal and Spatial Dependencies".MATHEMATICS 13.7(2025):13. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论