Institute of Computing Technology, Chinese Academy IR
Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers | |
Zeng, Hansheng1; Li, Yuqi2; Niu, Ruize3; Yang, Chuanguang2; Wen, Shiping4 | |
2025-05-12 | |
发表期刊 | KNOWLEDGE-BASED SYSTEMS
![]() |
ISSN | 0950-7051 |
卷号 | 316页码:11 |
摘要 | This paper presents an advanced architecture for spatiotemporal prediction MAD, integrating Mamba modules with Diffusion Transformers for efficient spatiotemporal modeling. The model consists of three phases: encoding, reconstruction, and prediction. Initially, the encoder transforms raw spatiotemporal data into compact latent embeddings. In the reconstruction phase, the Mamba module processes these embeddings through normalization and bidirectional state space models, generating reconstructed representations which are then decoded to restore the input data. The prediction phase utilizes the Diffusion Transformer to model spatiotemporal features, incorporating time embeddings and leveraging self-attention mechanisms to capture complex spatiotemporal dependencies. Finally, the model jointly trains the reconstruction and prediction paths to achieve high-precision spatiotemporal forecasts. Experimental results demonstrate the model's superior performance across various spatiotemporal prediction tasks, validating its effectiveness and robustness. Our codes are available at https://github.com/Hanson1331/KBS-MAD. |
关键词 | Deep learning Spatio-temporal prediction Mamba Diffusion |
DOI | 10.1016/j.knosys.2025.113347 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001460554900001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/40659 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wen, Shiping |
作者单位 | 1.Univ Hong Kong, Hong Kong, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China 3.Sun Yat Sen Univ, Guangzhou, Peoples R China 4.Univ Technol, Australian AI Inst, Fac Engn & Informat Technol, Ultimo, Australia |
推荐引用方式 GB/T 7714 | Zeng, Hansheng,Li, Yuqi,Niu, Ruize,et al. Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers[J]. KNOWLEDGE-BASED SYSTEMS,2025,316:11. |
APA | Zeng, Hansheng,Li, Yuqi,Niu, Ruize,Yang, Chuanguang,&Wen, Shiping.(2025).Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers.KNOWLEDGE-BASED SYSTEMS,316,11. |
MLA | Zeng, Hansheng,et al."Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers".KNOWLEDGE-BASED SYSTEMS 316(2025):11. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论