CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers
Zeng, Hansheng1; Li, Yuqi2; Niu, Ruize3; Yang, Chuanguang2; Wen, Shiping4
2025-05-12
发表期刊KNOWLEDGE-BASED SYSTEMS
ISSN0950-7051
卷号316页码:11
摘要This paper presents an advanced architecture for spatiotemporal prediction MAD, integrating Mamba modules with Diffusion Transformers for efficient spatiotemporal modeling. The model consists of three phases: encoding, reconstruction, and prediction. Initially, the encoder transforms raw spatiotemporal data into compact latent embeddings. In the reconstruction phase, the Mamba module processes these embeddings through normalization and bidirectional state space models, generating reconstructed representations which are then decoded to restore the input data. The prediction phase utilizes the Diffusion Transformer to model spatiotemporal features, incorporating time embeddings and leveraging self-attention mechanisms to capture complex spatiotemporal dependencies. Finally, the model jointly trains the reconstruction and prediction paths to achieve high-precision spatiotemporal forecasts. Experimental results demonstrate the model's superior performance across various spatiotemporal prediction tasks, validating its effectiveness and robustness. Our codes are available at https://github.com/Hanson1331/KBS-MAD.
关键词Deep learning Spatio-temporal prediction Mamba Diffusion
DOI10.1016/j.knosys.2025.113347
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001460554900001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40659
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wen, Shiping
作者单位1.Univ Hong Kong, Hong Kong, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Sun Yat Sen Univ, Guangzhou, Peoples R China
4.Univ Technol, Australian AI Inst, Fac Engn & Informat Technol, Ultimo, Australia
推荐引用方式
GB/T 7714
Zeng, Hansheng,Li, Yuqi,Niu, Ruize,et al. Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers[J]. KNOWLEDGE-BASED SYSTEMS,2025,316:11.
APA Zeng, Hansheng,Li, Yuqi,Niu, Ruize,Yang, Chuanguang,&Wen, Shiping.(2025).Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers.KNOWLEDGE-BASED SYSTEMS,316,11.
MLA Zeng, Hansheng,et al."Enhancing spatiotemporal prediction through the integration of Mamba state space models and Diffusion Transformers".KNOWLEDGE-BASED SYSTEMS 316(2025):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Hansheng]的文章
[Li, Yuqi]的文章
[Niu, Ruize]的文章
百度学术
百度学术中相似的文章
[Zeng, Hansheng]的文章
[Li, Yuqi]的文章
[Niu, Ruize]的文章
必应学术
必应学术中相似的文章
[Zeng, Hansheng]的文章
[Li, Yuqi]的文章
[Niu, Ruize]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。