CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SGKGE: Semantically Guided Knowledge Graph Embeddings via Complementary Latent Representations
Liu, Ruizhou1; Cao, Zongsheng2; Wu, Zhe3; Wu, Yiling3; Xu, Qianqian4; Huang, Qingming5
2025-04-24
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码14
摘要Knowledge graph (KG) completion is a challenging yet essential task that has attracted increasing attention in recent years. While entities in KGs typically present complex semantics (a phenomenon known as polysemy), previous works primarily focus on holistic but often inaccurate representations of entities, neglecting the diversity of their semantics. This limitation results in suboptimal representations for entities within KGs. To address this issue, we propose a new method termed semantically guided KG embeddings (SGKGE), which captures the precise semantics of entities in KGs from a semantics-guided perspective. Specifically, SGKGE first guides the learning of holistic semantics of entities through a hyperbolic manifold with learnable shared curvature and a geometric attention-fusion module, facilitating efficient reasoning. Subsequently, SGKGE captures fine-grained semantics through a set of Cartesian product Riemannian manifolds with distinct curvatures, coupled with a semantic interactions module. This approach enables SGKGE to produce more accurate entity semantics and enhance downstream applications. Experimental results demonstrate that our model achieves state-of-the-art performance on six well-established KG completion benchmarks. The release code is available at https://github.com/RuizhouLiu/SGKGE.
关键词Semantics Manifolds Vectors Training Tensors Knowledge graphs Animals Translation Tail Matrix decomposition Hyperbolic manifold knowledge graph embedding (KGE)
DOI10.1109/TNNLS.2025.3545773
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62236008] ; National Natural Science Foundation of China[62441232] ; National Natural Science Foundation of China[62472238] ; National Natural Science Foundation of China[U21B2038]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001481872600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40653
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Qianqian; Huang, Qingming
作者单位1.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Informat Engn, Beijing 100085, Peoples R China
3.Pengcheng Lab, Shenzhen 518055, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Ruizhou,Cao, Zongsheng,Wu, Zhe,et al. SGKGE: Semantically Guided Knowledge Graph Embeddings via Complementary Latent Representations[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2025:14.
APA Liu, Ruizhou,Cao, Zongsheng,Wu, Zhe,Wu, Yiling,Xu, Qianqian,&Huang, Qingming.(2025).SGKGE: Semantically Guided Knowledge Graph Embeddings via Complementary Latent Representations.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,14.
MLA Liu, Ruizhou,et al."SGKGE: Semantically Guided Knowledge Graph Embeddings via Complementary Latent Representations".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2025):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Ruizhou]的文章
[Cao, Zongsheng]的文章
[Wu, Zhe]的文章
百度学术
百度学术中相似的文章
[Liu, Ruizhou]的文章
[Cao, Zongsheng]的文章
[Wu, Zhe]的文章
必应学术
必应学术中相似的文章
[Liu, Ruizhou]的文章
[Cao, Zongsheng]的文章
[Wu, Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。